Электромагнитное излучение — воздействие на человека, защита. Электромагнитное поле

Электромагнитной волной называют возмущение электромагнитного поля, которое передается в пространстве. Ее скорость совпадает со скоростью света

2. Опишите опыт Герца по обнаружению электромагнитных волн

В опыте Герца источником электромагнитного возмущения были электромагнитные колебания, которые возникали в вибраторе (проводник с воздушным промежутком посередине). К этому промежутку подавалось высокое напряжение, оно вызывало искровой разряд. Через мгновение искровой разряд возникал в резонаторе (аналогичный вибратор). Самая интенсивная искра возникала в резонаторе, который был расположен параллельно вибратору.

3. Объясните результаты опыта Герца с помощью теории Максвелла. Почему электромагнитная волна является поперечной?

Ток через разрядный промежуток создает вокруг себя индукцию, магнитный поток возрастает, возникает индукционный ток смещения. Напряженность в точке 1 (рис. 155, б учебника) направлена против часовой стрелки в плоскости чертежа, в точке 2 ток направлен вверх и вызывает индукцию в точке 3, напряженность направлена вверх. Если величина напряженности достаточна для электрического пробоя воздуха в промежутке, то возникает искра и в резонаторе протекает ток.

Потому что направления векторов индукции магнитного поля и напряженности электрического поля перпендикулярны друг другу и направлению волны.

4. Почему излучение электромагнитных волн возникает при ускоренном движении электрических зарядов? Как напряженность электрического поля в излучаемой электромагнитной волне зависит от ускорения излучающей заряженной частицы?

Сила тока пропорциональна скорости движения заряженных частиц, поэтому электромагнитная волна возникает только если скорость движения этих частиц зависит от времени. Напряженность в излучаемой электромагнитной волне прямо пропорциональна ускорению излучающей заряженной частицы.

5. Как зависит плотность энергии электромагнитного поля от напряженности электрического поля?

Плотность энергии электромагнитного поля прямо пропорциональна квадрату напряженности электрического поля.

Электромагнитные волны – это результат многолетних споров и тысяч экспериментов. Доказательство наличия сил природного происхождения, способных перевернуть сложившееся общество. Это фактическое принятие простой истины – мы слишком мало знаем о мире, в котором живем.

Физика – королева среди наук о природе, способная дать ответы на вопросы происхождения не только жизни, но и самого мира. Она дает ученым способность изучать электрическое и магнитное поле, взаимодействие которых порождает ЭМВ (электромагнитные волны).

Что такое электромагнитная волна

Не так давно на экраны нашей страны вышел фильм «Война токов» (2018), где с ноткой художественного вымысла рассказывается о споре двух великих ученых Эдисона и Теслы. Один пытался доказать выгоду от постоянного тока, другой — от переменного. Эта продолжительная битва закончилась только в седьмом году двадцать первого века.

В самом начале «сражения» другой ученый, занимаясь проработкой теории относительности, описывал электричество и магнетизм как похожие явления.

В тридцатом году девятнадцатого века физик английского происхождения Фарадей открыл явление электромагнитной индукции и ввел термин единства поля электрического и магнитного. Также он утверждал, что движение в этом поле ограничено скоростью света.

Чуть позже теория английского ученого Максвелла поведала о том, что электричество вызывает магнитный эффект, а магнетизм — появление электрического поля. Поскольку оба этих поля движутся в пространстве и времени, то образуют возмущения – то есть электромагнитные волны.

Говоря проще электромагнитная волна – это пространственное возмущение электромагнитного поля.

Экспериментально существование ЭМВ доказал немецкий ученый Герц.

Электромагнитные волны, их свойства и характеристика

Электромагнитные волны характеризуются следующими факторами:

  • длиной (достаточно широким диапазоном);
  • частотой;
  • интенсивностью (или амплитудой колебания);
  • количеством энергии.

Основное свойство всех электромагнитных излучений – это величина длины волны (в вакууме), которая обычно указывается в нанометрах для видимого светового спектра.

Каждый нанометр представляет тысячную часть микрометра и измеряется расстоянием между двумя последовательными пиками (вершинами).

Соответствующая частота излучения волны – это число синусоидальных колебаний и обратная пропорциональность длине волны.

Частота обычно измеряется в Герцах. Таким образом, более длинные волны соответствуют более низкой частоте излучения, а более короткие — высокой частоте излучения.

Основные свойства волн:

  • преломление;
  • отражение;
  • поглощение;
  • интерференция.

Скорость электромагнитной волны

Фактическая скорость распространения электромагнитной волны зависит от материала, которым обладает среда, ее оптической плотности и наличия такого фактора как давление.

Кроме того, различные материалы имеют разную плотность «упаковки» атомов, чем ближе они расположены, тем меньше расстояние и выше скорость. В результате скорость электромагнитной волны зависит от материала, через который она движется.

Подобные эксперименты ставятся в адронном коллайдере, где главным инструментом воздействия является заряженная частица. Изучение электромагнитных явлений происходит там на квантовом уровне, когда свет раскладывается на мельчайшие частицы – фотоны. Но квантовая физика – это отдельная тема.

Согласно теории относительности, наибольшая скорость распространения волны не может превышать световую. Конечность скоростного предела в своих трудах описал Максвелл, объясняя это наличием нового поля – эфир. Современная официальная наука подобную взаимосвязь пока не изучала.

Электромагнитное излучение и его виды

Электромагнитное излучение состоит из электромагнитных волн, которые наблюдаются в виде колебания электрического и магнитного полей, распространяющиеся на скорости света (300 км за секунду в вакууме).

Когда ЭМ-излучение взаимодействует с веществом, его поведение качественно меняется по мере изменения частоты. Отчего оно преобразуется в:

  1. Радиоизлучение. На радиочастотах и микроволновых частотах эм–излучение взаимодействует с веществом в основном в виде общего набора зарядов, которые распределены по большому количеству затронутых атомов.
  2. Инфракрасное излучение. В отличие от низкочастотного радиоизлучения и СВЧ-излучения, инфракрасный излучатель обычно взаимодействует с диполями, присутствующими в отдельных молекулах, которые по мере вибрации изменяются на концах химической связи на атомном уровне.
  3. Видимое световое излучение. По мере того как частота увеличивается в видимый ряд, фотоны имеют достаточную энергию для изменения скрепленной структуры некоторых отдельно взятых молекул.
  4. Ультрафиолетовое излучение. Частота увеличивается. В ультрафиолетовых фотонах теперь достаточно энергии (более трех вольт), чтобы воздействовать вдвойне на связи молекул, постоянно химически их перестраивая.
  5. Ионизирующее излучение. На самых высоких частотах и наименьших по длине волны. Поглощение этих лучей материей затрагивает весь гамма-спектр. Самый известный эффект – радиация.

Что является источником электромагнитных волн

Мир, согласно молодой теории о происхождении всего, возник благодаря импульсу. Он освободил колоссальную энергию, которую назвали большим взрывом. Так в истории мироздания появилась первая эм-волна.

В настоящее время к источникам формирования возмущений относятся:

  • эмв излучает искусственный вибратор;
  • результат колебания атомных групп или частей молекул;
  • если происходит воздействие на внешнюю оболочку вещества (на атомно-молекулярном уровне);
  • эффект схожий со световым;
  • при ядерном распаде;
  • последствие торможения электронов.

Шкала и применение электромагнитных излучений

Под шкалой излучения понимается большой диапазон частоты волны от 3·10 6 ÷10 -2 до 10 -9 ÷ 10 -14 .

Каждая часть электромагнитного спектра обладает обширной областью применения в нашей повседневной жизни:

  1. Волны маленькой длины (микроволны). Данные электроволны используются в качестве спутникового сигнала, поскольку способны миновать атмосферу земли. Также немного усиленный вариант используется для разогрева и готовки на кухне – это микроволновая печь. Принцип приготовления прост – под действием микроволнового излучения поглощаются и ускоряются молекулы воды, отчего блюдо нагревается.
  2. Длинные возмущения используется в радиотехнологиях (радиоволны). Их частота не позволяет пройти облака и атмосферу, благодаря чему нам доступно Фм-радио и телевидение.
  3. Инфракрасное возмущение непосредственно связано с теплом. Увидеть его практически невозможно. Попробуйте заметить без специального оборудования луч из пульта управления вашего телевизора, музыкального центра или магнитолы в машине. Приборы, способные считывать подобное волны, используются в армиях стран (прибор ночного виденья). Также в индуктивных плитах на кухнях.
  4. Ультрафиолет также имеет отношение к теплу. Самый мощный природный «генератор» такого излучения – это солнце. Именно из-за действия ультрафиолета на коже человека образуется загар. В медицине этот тип волн используется для дезинфекции инструментов, убивая микробы и .
  5. Гамма-лучи – это самый мощный тип излучения, в котором сконцентрировалось коротковолновое возмущение с большой частотой. Энергия, заключенная в эту часть электромагнитного спектра, дает лучам большую проникающую способность. Применима в ядерной физике – мирное, ядерное оружие – боевое применение.

Влияние электромагнитных волн на здоровье человека

Измерение влияния эмв на человека – это обязанность ученых. Но не нужно быть специалистом, чтобы оценить интенсивность ионизирующего излучения – оно провоцирует изменения на уровне ДНК человека, что влечет за собой такие серьезные заболевания как онкология.

Не зря пагубное воздействие катастрофы ЧАЭС считается одной самых опасных для природы. Несколько квадратных километров некогда красивой территории стали зоной полного отчуждения. До конца века взрыв на ЧАЭС представляет опасность, пока не закончится полураспад радионуклидов.

Некоторые типы эмв (радио, инфракрасные, ультрафиолет) не наносят человеку сильного вреда и представляют собой лишь дискомфорт. Ведь магнитное поле земли нами практически не ощущается, а вот эмв от мобильного телефона может вызвать головную боль (воздействие на нервную систему).

Для того чтобы обезопасить здоровье от электромагнетизма, следует просто использовать меры разумной предосторожности. Вместо сотен часов за компьютерной игрой выйти погулять.

Электромагнитными волнами называется процесс распространения в пространстве переменного электромагнитного поля . Теоретически существование электромагнитных волн предсказано английским ученым Максвеллом в 1865 г., а впервые они экспериментально получены немецким ученым Герцем в 1888 г.

Из теории Максвелла вытекают формулы, описывающие колебания векторов и. Плоская монохроматическая электромагнитная волна, распространяющаяся вдоль оси x , описывается уравнениями

Здесь E и H - мгновенные значения, а E m и H m - амплитудные значения напряженности электрического и магнитного полей, ω - круговая частота, k - волновое число. Векторы и колеблются с одинаковой частотой и фазой, взаимно перпендикулярны и, кроме того, перпендикулярны вектору - скорости распространения волны (рис. 3.7). Т. е. электромагнитные волны поперечны.

В вакууме электромагнитные волны распространяются со скоростью. В среде с диэлектрической проницаемостью ε и магнитной проницаемостью µ скорость распространения электромагнитной волны равна:

Частота электромагнитных колебаний, так же, как и длина волны, могут быть в принципе любыми. Классификация волн по частоте (или длине волны) называется шкалой электромагнитных волн. Электромагнитные волны делятся на несколько видов.

Радиоволны имеют длину волны от 10 3 до 10 -4 м.

Световые волны включают:

Рентгеновское излучение - .

Световые волны - это электромагнитные волны, которые включают в себя инфракрасную, видимую и ультрафиолетовую части спектра. Длины световых волн в вакууме, соответствующие основным цветам видимого спектра, указаны в нижеприведенной таблице. Длина волны дана в нанометрах.

Таблица

Для световых волн характерны те же свойства, что и для электромагнитных волн.

1. Световые волны поперечны.

2. В световой волне колеблются вектора и.

Опыт показывает, что все виды воздействий (физиологическое, фотохимическое, фотоэлектрическое и др.) вызываются колебаниями электрического вектора . Его называют световым вектором .

Амплитуду светового вектора E m часто обозначают буквой A и вместо уравнения (3.30) используют уравнение (3.24).

3. Скорость света в вакууме.

Скорость световой волны в среде определяется по формуле (3.29). Но для прозрачных сред (стекло, вода) обычно.


Для световых волн вводится понятие - абсолютный показатель преломления.

Абсолютным показателем преломления называется отношение скорости света в вакууме к скорости света в данной среде

Из (3.29), с учетом того, что для прозрачных сред , можно записать равенство.

Для вакуума ε = 1 и n = 1. Для любой физической среды n > 1. Например, для воды n = 1,33, для стекла . Среда с большим показателем преломления называется оптически более плотной. Отношение абсолютных показателей преломления называется относительным показателем преломления:

4. Частота световых волн очень велика. Например, для красного света с длиной волны.

При переходе света из одной среды в другую частота света не изменяется, но изменяется скорость и длина волны.

Для вакуума - ; для среды - , тогда

.

Отсюда длина волны света в среде равна отношению длины волны света в вакууме к показателю преломления

5. Поскольку частота световых волн очень велика , то глаз наблюдателя не различает отдельных колебаний, а воспринимает усредненные потоки энергии. Таким образом вводится понятие интенсивности.

Интенсивностью называется отношение средней энергии, переносимой волной, к промежутку времени и к площади площадки, перпендикулярной направлению распространения волны:

Поскольку энергия волны пропорциональна квадрату амплитуды (см. формулу (3.25)), то интенсивность пропорциональна среднему значению квадрата амплитуды

Характеристикой интенсивности света, учитывающей его способность вызывать зрительные ощущения, является световой поток - Ф .

6. Волновая природа света проявляется, например, в таких явлениях, как интерференция и дифракция.

Электромагнитное излучение существует ровно столько, сколько живет наша Вселенная. Оно сыграло ключевую роль в процессе эволюции жизни на Земле. По факту, это возмущение состояние электромагнитное поля, распространяемого в пространстве.

Характеристики электромагнитного излучения

Любую электромагнитную волну описывают с помощью трех характеристик.

1. Частота.

2. Поляризация.

Поляризация – одна из основных волновых атрибутов. Описывает поперечную анизотропию электромагнитных волн. Излучение считается поляризованным тогда, когда все волновые колебания происходят в одной плоскости.

Это явление активно используют на практике. Например, в кино при показе 3D фильмов.

С помощью поляризации очки IMAX разделяют изображение, которое предназначено для разных глаз.

Частота – число гребней волны, которые проходят мимо наблюдателя (в данном случае – детектора) за одну секунду. Измеряется в герцах.

Длина волны – конкретное расстояние между ближайшими точками электромагнитного излучения, колебания которых происходят в одной фазе.

Электромагнитное излучение может распространяться практически в любой среде: от плотного вещества до вакуума.

Скорость распространения в вакууме равна 300 тыс. км за секунду.

Интересное видео о природе и свойствах ЭМ волн смотрите в видео ниже:

Виды электромагнитных волн

Все электромагнитное излучение делят по частоте.

1. Радиоволны. Бывают короткими, ультракороткими, сверхдлинными, длинными, средними.

Длина радиоволн колеблется от 10 км до 1 мм, а от 30 кГц до 300 ГГц.

Их источниками может быть как деятельность человека, так и различные естественные атмосферные явления.

2. . Длина волны лежит в пределах 1мм — 780нм, а может доходить до 429 ТГц. Инфракрасное излучение еще называют тепловым. Основа всей жизни на нашей планете.

3. Видимый свет. Длина 400 — 760/780нм. Соответственно колеблется в пределах 790-385 ТГц. Сюда относят весь спектр излучения, которое можно увидеть человеческим глазом.

4. . Длина волны меньше, чем в инфракрасного излучения.

Может доходить до 10 нм. таких волн очень большая – порядка 3х10^16 Гц.

5. Рентгеновские лучи . волны 6х10^19 Гц, а длина порядка 10нм — 5пм.

6. Гамма волны. Сюда относят любое излучение, которого больше, чем в рентгеновских лучах, а длина – меньше. Источником таких электромагнитных волн являются космические, ядерные процессы.

Сфера применения

Где-то начиная с конца XIX столетия, весь человеческий прогресс был связан с практическим применением электромагнитных волн.

Первое о чем стоит упомянуть – радиосвязь. Она дала возможность людям общаться, даже если они находились далеко друг от друга.

Спутниковое вещание, телекоммуникации – являются дальнейшим развитием примитивной радиосвязи.

Именно эти технологии сформировали информационный облик современного общества.

Источниками электромагнитного излучения следует рассматривать как крупные промышленные объекты, так и различные линии электропередач.

Электромагнитные волны активно используются в военном деле (радары, сложные электрические устройства). Также без их применения не обошлась и медицина. Для лечения многих болезней могут использовать инфракрасное излучение.

Рентгеновские снимки помогают определить повреждения внутренних тканей человека.

С помощью лазеров проводят ряд операций, требующих ювелирной точности.

Важность электромагнитного излучения в практической жизни человека сложно переоценить.

Советское видео о электромагнитном поле:

Возможное негативное влияние на человека

Несмотря на свою полезность, сильные источники электромагнитного излучения могут вызывать такие симптомы:

Усталость;

Головную боль;

Тошноту.

Чрезмерное воздействие некоторых видов волн вызывают повреждения внутренних органов, центральной нервной системы, мозга. Возможны изменения в психике человека.

Интересное виде о влиянии ЭМ волн на человека:

Чтобы избежать таких последствий практически во всех странах мира действуют стандарты, регулирующие электромагнитную безопасность. Для каждого типа излучений существуют свои регулирующие документы (гигиенические нормы, нормы радиационной безопасности). Влияние электромагнитных волн на человека до конца не изучено, поэтому ВОЗ рекомендует минимизировать их воздействие.

), описывающей электромагнитное поле, теоретически показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников - зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью, которая в вакууме равна скорости света: с = 299792458±1, 2 м/с. Совпадение скорости распространения электромагнитных волн в вакууме с измеренной ранее скоростью света позволило Максвеллу сделать вывод о том, что свет представляет собой электромагнитные волны. Подобное заключение в дальнейшем легло в основу электромагнитной теории света.

В 1888 году теория электромагнитных волн получила экспериментальное подтверждение в опытах Г. Герца . Используя источник высокого напряжения и вибраторы (см. Герца вибратор), Герцу удалось выполнить тонкие эксперименты по определению скорости распространения электромагнитной волны и ее длины. Экспериментально подтвердилось, что скорость распространения электромагнитной волны равна скорости света, что доказывало электромагнитную природу света.