Что характеризует сила всемирного тяготения. Что такое закон всемирного тяготения: формула великого открытия

Абсолютно на все тела во Вселенной действует волшебная сила, каким-то образом притягивающая их к Земле (точнее к ее ядру). Никуда не сбежать, нигде не укрыться от всеобъемлющего магического тяготения: планеты нашей Солнечной системы притягиваются не только к огромному Солнцу, но и друг к другу, все предметы, молекулы и мельчайшие атомы также взаимно притягиваются. известный даже маленьким детям, посвятив жизнь изучению этого явления, установил один из величайших законов — закон всемирного тяготения.

Что такое сила тяжести?

Определение и формула давно и многим известны. Напомним, сила тяжести — это определенная величина, одно из естественных проявлений всемирного тяготения, а именно: сила, с которой всякое тело неизменно притягивается к Земле.

Сила тяжести обозначается латинской буквой F тяж.

Сила тяжести: формула

Как вычислить направленную на определенное тело? Какие другие величины необходимо знать для того? Формула расчета силы тяжести довольно проста, ее изучают в 7-м классе общеобразовательной школы, в начале курса физики. Чтобы ее не просто выучить, но и понять, следует исходить из того, что сила тяжести, неизменно действующая на тело, прямо пропорциональна его количественной величине (массе).

Единица силы тяжести названа по имени великого ученого— Ньютон.

Всегда направлена строго вниз, к центру земного ядра, благодаря ее воздействию все тела равноускоренно падают вниз. Явления тяготения в повседневной жизни мы наблюдаем повсеместно и постоянно:

  • предметы, случайно или специально выпущенные из рук, обязательно падают вниз на Землю (или на любую препятствующую свободному падению поверхность);
  • запущенный в космос спутник не улетает от нашей планеты на неопределенное расстояние перпендикулярно вверх, а остается вращаться на орбите;
  • все реки текут с гор и не могут быть обращены вспять;
  • бывает, человек падает и травмируется;
  • на все поверхности садятся мельчайшие пылинки;
  • воздух сосредоточен у поверхности земли;
  • тяжело носить сумки;
  • из облаков и туч капает дождь, падает снег, град.

Наряду с понятием "сила тяжести" используется термин "вес тела". Если тело расположить на ровной горизонтальной поверхности, то его вес и сила тяжести численно равны, таким образом, эти два понятия часто подменяют, что совсем не правильно.

Ускорение свободного падения

Понятие "ускорение свободного падения" (иначе говоря, связано с термином "сила тяжести". Формула показывает: для того чтобы вычислить силу тяжести, нужно массу умножить на g (ускорение св. п.).

"g" = 9,8 Н/кг, это постоянная величина. Однако более точные измерения показывают, что из-за вращения Земли значение ускорения св. п. неодинаково и зависит от широты: на Северном полюсе оно = 9,832 Н/кг, а на знойном экваторе = 9,78 Н/кг. Получается, в разных местах планеты на тела, обладающие равной массой, направлена разная сила тяжести (формула же mg все равно остается неизменной). Для практических расчетов было принято решение на незначительные погрешности этой величины и пользоваться усредненным значением 9,8 Н/кг.

Пропорциональность такой величины, как сила тяжести (формула доказывает это), позволяет измерять вес предмета динамометром (похож на обычный бытовой бизмен). Обратите внимание, что прибор показывает только силу, так как для определения точной массы тела необходимо знать региональное значение "g".

Действует ли сила тяжести на любом (и близком, и далеком) расстоянии от земного центра? Ньютон выдвинул гипотезу, что она действует на тело даже при значительном удалении от Земли, но ее значение снижается обратно пропорционально квадрату расстояния от предмета до ядра Земли.

Гравитация в Солнечной системе

Есть ли Определение и формула относительно других планет сохраняют свою актуальность. С одной лишь разницей в значении "g":

  • на Луне = 1,62 Н/кг (в шесть раз меньше земного);
  • на Нептуне = 13,5 Н/кг (почти в полтора раза выше, чем на Земле);
  • на Марсе = 3,73 Н/кг (более чем в два с половиной раза меньше, чем на нашей планете);
  • на Сатурне = 10,44 Н/кг;
  • на Меркурии = 3,7 Н/кг;
  • на Венере = 8,8 Н/кг;
  • на Уране = 9,8 Н/кг (практически такое же, как у нас);
  • на Юпитере = 24 Н/кг (почти в два с половиной раза выше).

ОПРЕДЕЛЕНИЕ

Закон всемирного тяготения открыл И. Ньютоном:

Два тела притягиваются друг к другу с , прямо пропорциональной произведению их и обратно пропорциональной квадрату расстояния между ними:

Описание закона всемирного тяготения

Коэффициент — это гравитационная постоянная. В системе СИ гравитационная постоянная имеет значение:

Эта постоянная, как видно, очень мала, поэтому силы тяготения между телами, имеющими небольшие массы, тоже малы и практически не ощущаются. Однако движение космических тел полностью определяется гравитацией. Наличие всемирного тяготения или, другими словами, гравитационного взаимодействия объясняет, на чем «держатся» Земля и планеты, и почему они двигаются вокруг Солнца по определенным траекториям, а не улетают от него прочь. Закон всемирного тяготения позволяет определить многие характеристики небесных тел – массы планет, звезд, галактик и даже черных дыр. Этот закон позволяет с большой точностью рассчитать орбиты планет и создать математическую модель Вселенной.

С помощью закона всемирного тяготения также можно рассчитать космические скорости. Например, минимальная скорость, при которой тело, движущееся горизонтально над поверхностью Земли, не упадёт на неё, а будет двигаться по круговой орбите – 7,9 км/с (первая космическая скорость). Для того, чтобы покинуть Землю, т.е. преодолеть ее гравитационное притяжение, тело должно иметь скорость 11,2 км/с, (вторая космическая скорость).

Гравитация является одним из самых удивительных феноменов природы. В отсутствии сил гравитации существование Вселенной было бы невозможно, Вселенная не могла бы даже возникнуть. Гравитация ответственна за многие процессы во Вселенной – ее рождение, существование порядка вместо хаоса. Природа гравитации до сих пор до конца неразгаданна. До настоящего времени никто не смог разработать достойный механизм и модель гравитационного взаимодействия.

Сила тяжести

Частным случаем проявления гравитационных сил является сила тяжести.

Сила тяжести всегда направлена вертикально вниз (по направлению к центру Земли).

Если на тело действует сила тяжести, то тело совершает . Вид движения зависит от направления и модуля начальной скорости.

С действием силы тяжести мы сталкиваемся каждый день. , через некоторое время оказывается на земле. Книга, выпущенная из рук, падает вниз. Подпрыгнув, человек не улетает в открытый космос, а опускается вниз, на землю.

Рассматривая свободное падение тела вблизи поверхности Земли как результат гравитационного взаимодействия этого тела с Землей, можно записать:

откуда ускорение свободного падения:

Ускорение свободного падения не зависит от массы тела, а зависит от высоты тела над Землей. Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся около полюсов, расположены немного ближе к центру Земли. В связи с этим ускорение свободного падения зависит от широты местности: на полюсе оно немного больше, чем на экваторе и других широтах (на экваторе м/с , на Северном полюсе экваторе м/с .

Эта же формула позволяет найти ускорение свободного падения на поверхности любой планеты массой и радиусом .

Примеры решения задач

ПРИМЕР 1 (задача о «взвешивании» Земли)

Задание Радиус Земли км, ускорение свободного падения на поверхности планеты м/с . Используя эти данные, оценить приближенно массу Земли.
Решение Ускорение свободного падения у поверхности Земли:

откуда масса Земли:

В системе Си радиус Земли м.

Подставив в формулу численные значения физических величин, оценим массу Земли:

Ответ Масса Земли кг.

ПРИМЕР 2

Задание Спутник Земли движется по круговой орбите на высоте 1000 км от поверхности Земли. С какой скоростью движется спутник? За какое время спутник совершит один полный оборот вокруг Земли?
Решение По , сила, действующая на спутник со стороны Земли, равна произведению массы спутника на ускорение, с которым он движется:

Со стороны земли на спутник действует сила гравитационного притяжения, которая по закону всемирного тяготения равна:

где и массы спутника и Земли соответственно.

Так как спутник находится на некоторой высоте над поверхностью Земли, расстояние от него до центра Земли:

где радиус Земли.

В природе существуют различные силы, которые характеризуют взаимодействие тел. Рассмотрим те силы, которые встречаются в механике.

Гравитационные силы. Вероятно, самой первой силой, существование которой осознал человек, являлась сила притяжения, действующая на тела со стороны Земли.

И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. И потребовались многие века для того, чтобы люди поняли, что сила тяготения действует между любыми телами. Первым этот факт понял английский физик Ньютон. Анализируя законы, которым подчиняется движение планет (законы Кеплера), он пришёл к выводу, что наблюдаемые законы движения планет могут выполняться только в том случае, если между ними действует сила притяжения, прямо пропорциональная их массам и обратно пропорциональная квадрату расстояния между ними.

Ньютон сформулировал закон всемирного тяготения . Любые два тела притягиваются друг к другу. Сила притяжения между точечными телами направлена по прямой, их соединяющей, прямо пропорциональна массам обоих и обратно пропорциональна квадрату расстояния между ними:

Под точечными телами в данном случае понимают тела, размеры которых во много раз меньше расстояния между ними.

Силы всемирного тяготения называют гравитационными силами. Коэффициент пропорциональности G называют гравитационной постоянной. Его значение было определено экспериментально: G = 6,7 10¯¹¹ Н м² / кг².

Сила тяготения действующая вблизи поверхности Земли, направлена к её центру и вычисляется по формуле:

где g – ускорение свободного падения (g = 9,8 м/с²).

Роль силы тяготения в живой природе очень значительна, так как от её величины во многом зависят размеры, формы и пропорции живых существ.

Вес тела. Рассмотрим, что происходит, когда некоторый груз кладут на горизонтальную плоскость (опору). В первый момент после того, как груз опустили, он начинает двигаться вниз под действием силы тяжести (рис. 8).

Плоскость прогибается и возникает сила упругости (реакция опоры), направленная вверх. После того как сила упругости (Fу) уравновесит силу тяжести, опускание тела и прогиб опоры прекратятся.

Прогиб опоры возник под действием тела, следовательно, со стороны тела на опору действует некоторая сила (Р), которую называют весом тела (рис. 8, б). По третьему закону Ньютона вес тела равен по величине силе реакции опоры и направлен в противоположную сторону.

Р = - Fу = Fтяж.

Весом тела называют силу Р, с которой тело действует на неподвижную относительно него горизонтальную опору .

Поскольку сила тяжести (вес) приложены к опоре, она деформируется и за счёт упругости оказывает противодействие силе тяжести. Силы, развиваемые при этом со стороны опоры называются силами реакции опоры, а само явление развития противодействия - реакцией опоры. По третьему закону Ньютона сила реакции опоры равна по величине силе тяжести тела и противоположна ему по направлению.

Если человек на опоре движется с ускорением звеньев его тела, направленных от опоры, то сила реакции опоры возрастает на величину ma, где m – масса человека, а – ускорения с которыми движутся звенья его тела. Эти динамические воздействия можно фиксировать с помощью тензометрических устройств (динамограммы).

Вес не следует путать с массой тела. Масса тела характеризует его инертные свойства и не зависит ни от силы тяготения, ни от ускорения, с которым оно движется.

Вес тела характеризует силу, с которой оно действует на опору и зависит как от силы тяготения, так и от ускорения движения.

Например, на Луне вес тела примерно в 6 раз меньше, чем вес тела на Земле, Масса же в обоих случаях одинакова и определяется количеством вещества в теле.

В быту, технике, спорте вес часто указывают не в ньютонах (Н), а в килограммах силы (кгс). Переход от одной единицы к другой осуществляется по формуле: 1 кгс = 9,8 Н.

Когда опора и тело неподвижны, то масса тела равна силе тяжести этого тела. Когда же опора и тело движутся с некоторым ускорением, то в зависимости от его направления тело может испытывать или невесомость или перегрузку. Когда ускорение совпадает по направлению и равно ускорению свободного падения, вес тела будет равен нулю, поэтому возникает состояние невесомости (МКС, скоростной лифт при опускании вниз). Когда же ускорение движения опоры противоположно ускорению свободного падения, человек испытывает перегрузку (старт с поверхности Земли пилотируемого космического корабля, Скоростной лифт, поднимающийся вверх).

В 1667 году. Ньютон понимал, что для того, чтобы Луна вращалась вокруг Земли, а Земля и другие планеты вокруг Солнца, должна существовать сила, удерживающая их на круговой орбите. Он предположил, что сила тяжести, действующая на все тела на Земле и сила, удерживающая планеты на их круговых орбитах, есть одна и та же сила. Эта сила получила название сила всемирного тяготения или гравитационная сила . Эта сила является силой притяжения и действует между всеми телами. Ньютон сформулировал закон всемирного тяготения : две материальные точки притягиваются друг к другу с силой прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними .

Коэффициент пропорциональности G во времена Ньютона был неизвестен. Впервые он был экспериментально измерен английским ученым Кавендишем . Этот коэффициент называется гравитационной постоянной . Ее современное значение равно . Гравитационная постоянная является одной из самых фундаментальных физических констант. Закон всемирного тяготения можно записать в векторном виде. Если сила, действующая на вторую точку со стороны первой равна F 21 , а радиус-вектор второй точки относительно первой равен R 21 , то:

Представленный вид закона всемирного тяготения справедлив только для гравитационного взаимодействия материальных точек. Для тел произвольной формы и размеров его использовать нельзя. Вычисление гравитационной силы в общем случае является очень непростой задачей. Однако, есть тела, не являющиеся материальными точками, для которых гравитационную силу можно считать по приведенной формуле. Это тела, обладающие сферической симметрией, например, имеющие форму шара. Для таких тел приведенный закон справедлив, если под расстоянием R понимать расстояние между центрами тел. В частности силу тяжести, действующую на все тела со стороны Земли можно считать по этой формуле, так как Земля имеет форму шара, а все остальные тела можно считать материальными точками по сравнению с радиусом Земли.

Так как сила тяжести является гравитационной силой, то можно написать, что сила тяжести, действующая на тело массой m равна

Где М З и R З - масса и радиус Земли. С другой стороны сила тяжести равна mg, где g - ускорение свободного падения. Значит ускорение свободного падения равно

Это формула для ускорения свободного падения на поверхности Земли. Если удаляться от поверхности Земли, то расстояние до центра Земли будет увеличиваться, а ускорение свободного падения соответственно уменьшаться. Так на высоте h над поверхностью Земли ускорение свободного падения равно:

Человеку давно уже известна сила, заставляющая все тела падать на Землю. Но до XVII в. считалось, что только Земля обладает особым свойством притягивать к себе тела, находящиеся вблизи ее поверхности. В 1667 г. Ньютон высказал предположение, что вообще между всеми телами действуют силы взаимного притяжения. Он назвал эти силы силами всемирного тяготения.

Ньютон открыл законы движения тел. Согласно этим законам движение с ускорением возможно только под действием силы. Так как падающие тела движутся с ускорением, то на них должна действовать сила, направленная вниз, к Земле.

Почему же мы не замечаем взаимного притяжения между окружающими нас телами? Может быть, это объясняется тем, что силы притяжения между ними слишком малы?

Ньютону удалось показать, что сила притяжения между телами зависит от масс обоих тел и, как оказалось, достигает заметной величины только тогда, когда взаимодействующие тела (или хотя бы одно из них) обладают достаточно большой массой.

Ускорение свободного падения отличается той любопытной особенностью, что оно в данном месте одинаково для всех тел, для тел любой массы. На первый взгляд это очень странное свойство. Ведь из формулы, выражающей второй закон Ньютона,

следует, что ускорение тела должно быть тем больше, чем меньше его масса. Тела с малой массой должны падать с большим ускорением, чем тела, у которых масса велика. Опыт же показал (см. § 20), что ускорения свободно падающих тел не зависят от их масс. Единственное объяснение, которое можно найти этому удивительному

факту, заключается в том, что сама сила с которой Земля притягивает тело, пропорциональна его массе т.

Действительно, в этом случае увеличение массы например, вдвое приведет и к увеличению силы тоже вдвое, а ускорение, которое равно отношению останется неизменным. Ньютон и сделал этот единственно правильный вывод: сила всемирного тяготения пропорциональна массе того тела, на которое она действует. Но ведь тела притягиваются взаимно. А по третьему закону Ньютона на оба притягивающихся тела действуют одинаковые по абсолютному значению силы. Значит, сила взаимного притяжения должна быть пропорциональна массам каждого из притягивающихся тел. Тогда оба тела будут получать ускорения, которые не зависят от их масс.

Если сила пропорциональна массам каждого из взаимодействующих тел, то это означает, что она пропорциональна произведению масс обоих тел.

От чего еще зависит сила взаимного притяжения двух тел? Ньютон предположил, что она должна зависеть от расстояния между телами. Из опыта хорошо известно, что вблизи Земли ускорение свободного падения равно и оно одинаково для тел, падающих с высоты 1, 10 или 100 м. Но отсюда еще нельзя заключить, что ускорение не зависит от расстояния до Земли. Ньютон считал, что отсчитывать расстояния надо не от поверхности Земли, а от ее центра. Но радиус Земли равен 6400 км. Понятно поэтому, что несколько десятков или сотен метров над поверхностью Земли не могут заметно изменить ускорение свободного падения.

Чтобы выяснить, как влияет расстояние между телами на силу их взаимного притяжения, нужно знать, с каким ускорением движутся тела, удаленные от поверхности Земли на большие расстояния.

Ясно, что измерить ускорение свободного падения по вертикали тел, находящихся на высоте в несколько тысяч километров над поверхностью Земли, трудно. Удобнее измерить центростремительное ускорение тела, движущегося вокруг Земли по окружности под действием силы притяжения к Земле. Вспомним, что таким же приемом мы пользовались при изучении силы упругости. Мы измеряли центростремительное ускорение цилиндра, движущегося по окружности под действием этой силы.

В изучении силы всемирного тяготения сама природа пришла на помощь физикам и дала возможность определить ускорение тела, движущегося по окружности вокруг Земли. Таким телом является естественный спутник Земли - Луна. Ведь если верно предположение Ньютона, то надо считать, что центростремительное ускорение Луне при ее движении по окружности вокруг Земли сообщает сила ее притяжения к Земле. Если бы сила тяготения между Луной и Землей не зависела от расстояния между ними, то центростремительное ускорение Луны было бы таким же, как ускорение

свободного падения тел вблизи поверхности Земли. В действительности центростремительное ускорение, с которым движется Луна по орбите, равно, как мы уже знаем (см. упр. 16, задачу 9), . А это приблизительно в 3600 раз меньше, чем ускорение падающих тел вблизи Земли. В то же время известно, что расстояние от центра Земли до центра Луны равно 384 000 км. Это в 60 раз больше радиуса Земли, т. е. расстояния от центра Земли до ее поверхности. Таким образом, увеличение расстояния между притягивающимися телами в 60 раз приводит к уменьшению ускорения в 602 раз. Отсюда можно заключить, что ускорение, сообщаемое телам силой всемирного тяготения, а значит, и сама эта сила обратно пропорциональны квадрату расстояния между взаимодействующими телами.

К такому заключению и пришел Ньютон.

Можно, следовательно, написать, что два тела массами притягиваются друг к другу с силой абсолютное значение которой выражается формулой

где - расстояние между телами, у - коэффициент пропорциональности, одинаковый для всех тел в природе. Называется этот коэффициент постоянной всемирного тяготения или гравитационной постоянной.

Приведенная формула выражает закон всемирного тяготения, открытый Ньютоном:

Все тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Под действием силы всемирного тяготения движутся и планеты вокруг Солнца, и искусственные спутники вокруг Земли.

Но что надо понимать под расстоянием между взаимодействующими телами? Возьмем два тела произвольной формы (рис. 109). Сразу возникает вопрос: какое расстояние нужно подставлять в формулу закона всемирного тяготения? Расстояние между

самыми дальними точками поверхности обоих тел или же, наоборот, расстояние между ближайшими точками? А может быть, расстояние между какими-нибудь другими точками тела?

Оказывается, формула (1), выражающая закон всемирного тяготения, справедлива, когда расстояние между телами настолько велико по сравнению с их размерами, что тела можно считать материальными точками. Материальными точками при вычислении силы тяготения между ними можно считать Землю и Луну, планеты и Солнце.

Если тела имеют форму шаров, то даже в том случае, когда их размеры сравнимы с расстоянием между ними, они притягиваются между собой как материальные точки, расположенные в центрах шаров (рис. 110). В этом случае - это расстояние между центрами шаров.

Формулой (1) можно также пользоваться при вычислении силы притяжения между шаром большого радиуса и телом произвольной формы небольших размеров, находящимся близко к поверхности шара (рис. 111). Тогда размерами тела можно пренебречь по сравнению с радиусом шара. Именно так мы поступаем, когда рассматриваем притяжение различных тел к земному шару.

Сила тяготения - это еще один пример силы, которая зависит от положения (координат) того тела, на которое эта сила действует, относительно того тела, которое оказывает действие. Ведь сила тяготения зависит от расстояния между телами.