Цвет от освещения естественные цвета. Влияние света на оттенки цвета

Видимый цвет зависит от характера освещения. Искусственный вечерний свет (электрические лампы) по сравнению с дневным - желто-оранжевый, в нем преобладает желто-красная часть спектра. Естественно, что при таком освещении все поверхности отражают желто-оранжевое излучение в большей мере, чем при дневном освещении, следовательно, все цвета приобретают желтоватый оттенок. При вечернем искусственном освещении красные, оранжевые и желтые цвета светлеют; голубо-зеленые, голубые, синие, фиолетовые темнеют; светлота желто-зеленых не изменяется; красные цвета становятся более насыщенными; оранжевые краснеют; голубые зеленеют; синие теряют насыщенность; темно-синие становятся неотличимыми от черных; фиолетовые краснеют; желтые цвета кажутся бледными. При красном свете восходящего или заходящего солнца все цвета краснеют, красные становятся более насыщенными, зеленые сильно темнеют, теряя насыщенность. Правило изменения цветов при цветном освещении: цвета одного цветового тона с освещением усиливаются по насыщенности, цвета противоположного тона ахроматизируются (теряют насыщенность и чернеют), все остальные цвета приобретают оттенок освещения, при этом цвета, по тону родственные освещению, светлеют, а приближающиеся к противоположному тону - темнеют. Изменение цвета зависит и от интенсивности освещения. При ярком освещении все цвета выбеливаются, а при слепящих яркостях цвета - желтеют. При ярком освещении уменьшается количество цветовых оттенков на светлых поверхностях, при слабом освещении - на темных поверхностях, а также в тенях. В сумерках при постепенном ослаблении света цветовые тона перестают различаться: сначала красные, затем оранжевые, желтые. Дольше других различаются синие цвета. Одновременно с тем изменяются и светлотные отношения между цветами. Днем самыми светлыми цветами мы видим желтые, а в сумерках - голубые, которые постепенно становятся неотличимыми от белых. Утром, на рассвете, по мере усиления света постепенно начинают различаться цветовые тона в обратном порядке: раньше - синие, позже - красные. 2.6. Изменение цветов на расстоянии. Воздушная и световая перспектива.

У предметов, расположенных на близком расстоянии от рисующего, хорошо видна их величина, характер формы, объем, материал, фактура, детали, светотень, цвет и другие качества. По мере удаления предмета эти качества постепенно начинают претерпевать изменения или становятся неразличимыми вообще, что является следствием действия воздушной и световой перспективы.

Воздух представляет собой газообразную материальную среду, в которой содержатся многие примеси - пыль, пары влаги, копоть и др. Все это препятствует прохождению света, рассеивает и изменяет его цветовую окрашенность. В зависимости от толщины воздуха, его температуры, влажности, характера и количества присутствующих в нем инородных примесей цвето-световая среда атмосферы бывает различной. В результате расстояние до предметов, состояние атмосферы оказывают значительное влияние на собственную окраску предметов. Цвет предмета вдали выглядит более нейтральным, чем вблизи. Предметы со светлой окраской при удалении темнеют, а темные - светлеют. Общий тон массы предметов, например, деревьев, вдали значительно светлее, чем у аналогичных предметов, находящихся рядом с наблюдателем. Вдали предметы, особенно имеющие темную окраску, кажутся голубоватыми, фиолетовыми. По мере удаления изменяется не только собственная цветовая окраска предметов. Увеличивающийся слой воздуха размывает их очертания и контрасты светотени. Предметы начинают принимать расплывчатый характер. На большом расстоянии становится невидимым объем, рельеф, детали, материал предмета. Вдали предмет смотрится обобщенно, мягко, в виде небольшого плоского пятна. Дождь, туман, снегопад изменяют видимую характеристику предметов, расположенных даже на небольшом расстоянии от зрителя.

Таблица 3. Законы воздушной перспективы

восприятие предметов в пространстве

изображение предметов на этюде.

удаленных

удаленных

подробное

обобщенное

детальное

обобщенное

неопределенное по форме

с резкими контурами

с мягкими контурами

контрастное по светлоте

приглушенное, сближенное по светлоте (светлые предметы кажутся темнее, а темные светлее)

контрастное по светлоте, с ярко выраженными градациями светотени

без градаций светотени; светлые предметы притеняются, а темные - осветляются

объемное, трехмерное с хорошо различимыми признаками высоты, ширины и глубины пространства

плоскостное

объемное с признаками иллюзии глубины пространства

плоскостное без признаков глубины пространства

без признаков воздушной дымки, интенсивное по цвету

с воздушной дымкой

насыщенное по цветовым тонам

блеклое, слабонасыщенное по цвету с характерным оттенком воздушной дымки

многоцветное

одноцветное или в узком интервале цветовой гаммы.

разнообразное по окраскам и цветовым сочетаниям

монохромное или сближенное в пределах общего цветового тона.

Сетчатка состоит из двух видов светочувствительных клеток - палочек и колбочек. Днем, при ярком освещении, мы воспринимаем зрительную картину и различаем цвета с помощью колбочек. При слабом же освещении в действие вступают палочки, которые более чувствительны к свету, но не воспринимают цвета. Поэтому-то в сумерках мы видим все в сером цвете, и даже существует пословица "Ночью все кошки серые

Потому что в глазу есть два типа светочувствительных элементов: колбочки и палочки. Колбочки различают цвета, а палочки различают только интенсивность света, то есть видят всё в черно-белом изображении. Колбочки менее светочувствительны, чем палочки, так что при слабой освещенности они вообще ничего не видят. Палочки же очень чувствительны и реагируют даже на очень слабый свет. Вот поэтому в полутьме мы не различаем цветов, хотя и видим контуры. Кстати, колбочки в основном сконцентрированы в центре поля зрения, а палочки по краям. Этим объясняется то, что наше боковое зрение тоже не очень-то цветное, даже при дневном свете. Кроме того, по этой же самой причине астрономы прошлых веков старались при наблюдениях использовать боковое зрение: в темноте оно острее прямого.

35. Бывает ли 100% белизна и 100% чернота? В каких единицах измеряется белизна ?

В научном цветоведении для оценки светлотных качеств поверхности пользуются также термином «белизна», который имеет особо значение для практики и теории живописи. Термин «белизна» по своему содержанию близок к понятиям «яркость» и «светлота», однако, в отличие от последних, она содержит оттенок качественной характеристики и даже в какой-то мере эстетической.

Что же такое белизна? Белизна характеризует восприятие отражательной способности. Чем больше поверхность отражает падающего на неё света, тем она будет белее, и теоретически идеально белой поверхностью следует считать поверхность, отражающую все падающие на неё лучи, однако практически таких поверхностей не существует, так же как не существует поверхностей, которые полностью поглощали бы падающий на них свет.

Начнём с вопроса, какого цвета бумага в школьных тетрадях, альбомах, книгах?

Вы, наверно, подумали, что за пустой вопрос? Конечно белого. Правильно – белого! Ну, а рама, подоконник, покрашены какой краской? Тоже белой. Всё правильно! А теперь возьмите тетрадный лист, газету, несколько листов из разных альбомов для рисования и черчения, положите их на подоконник и внимательно рассмотрите какого они цвета. Оказывается, будучи белыми, они все разного цвета (правильнее было бы сказать – разного оттенка). Один бело-серый, другой бело-розовый, третий бело-голубой и т.д. Так какой же из них «чисто белый»?

Практически мы называем белыми поверхности, отражающие различную долю света. Например, меловой грунт мы оцениваем как белый грунт. Но стоит на нём выкрасить квадрат цинковыми белилами, как он утратит свою белизну, если же внутри затем закрасить квадрат белилами, имеющими ещё большую отражательную способность, например баритовыми, то первый квадрат также частично утратит свою белизну, хотя все три поверхности мы практически будем считать белыми.

Выходит, что понятие «белизна относительно, но в то же время имеется какой-то рубеж, с которого воспринимаемую поверхность мы начнём считать уже не белой.

Понятие белизны можно выразить математически.

Отношение светового потока, отражённого поверхностью, к потоку, падающему на неё (в процентах) носит название «АЛЬБЕДО» (от лат. albus – белый)

АЛЬБЕДО (от позднелат. albedo – белизна), величина, характеризующая способность поверхности отражать падающий на неё поток электромагнитного излучения или частиц. Альбедо равно отношению отраженного потока к падающему.

Это отношение для данной поверхности в основном сохраняется при различных условиях освещённости, и поэтому белизна является более постоянным качеством поверхности, нежели светлота.

Для белых поверхностей альбедо будет равняться 80 – 95%. Белизна различных белых веществ, таким образом, может быть выражена через отражательную способность.

В.Оствальд даёт следующую таблицу белизны различных белых материалов.

Сернокислый барий

(баритовые белила)

99%

Цинковые белила

94%

Свинцовые белила

93%

Гипс

90%

Свежий снег

90%

Бумага

86%

Мел

84%

Тело, которое совершенно не отражает света, в физике называется абсолютно чёрным. Но самая чёрная видимая нами поверхность не будет с физической точки зрения абсолютно чёрной. Поскольку она видима, то отражает хоть какую-то долю света и, таким образом, содержит хотя бы ничтожный процент белизны – так же как поверхность, приближающаяся к идеально белой, можно сказать, содержит хотя бы ничтожный процент черноты.

Искусственный вечерний свет (электрических и особенно керосиновых ламп и свечей) по сравнению с дневным - желто-оранжевый, в нем преобладает желто-красная часть спектра. Естественно, что все поверхности при таком освещении отражают желто-оранжевое излучение в относительно большей мере (по сравнению с остальными частями спектра), чем при дневном освещении

Следовательно, все цвета должны приобретать желтоватый оттенок - красные становятся более оранжевыми и более насыщенными, голубые же, синие и другие холодные - сильно темнеют, теряют насыщенность, а некоторые из них чернеют (предметы такой окраски сильно поглощают желто-оранжевый свет).

Так это и наблюдается в действительности при вечернем искусственном освещении: красные, оранжевые и желтые цвета свет­леют; голубо-зеленые, голубые, синие и фиолетовые темнеют; светлота желто-зеленых не изменяется; красные цвета становятся насыщеннее; оранжевые краснеют; голубые зеленеют и иногда бывают неотличимы от голубо-зеленых; синие теряют насыщенность; темно-синие становятся неотличимыми от черных; некоторые синие слегка краснеют (например, цветок василька); фиолетовые краснеют и иногда бывают неотличимы от пурпурных.

Желтые цвета вечером при искусственном освещении кажутся более бледными. Живописные этюды, написанные при искусственном вечернем свете малоопытными людьми, днем оказываются слишком желтыми (вечером желтизна не замечается). Это своеобразное явление объясняется особой причиной.

Дело в том, что, когда мы видим и осознаем условия освещения, в которых находятся наблюдаемые нами объекты, когда это освещение является общим, мы, так сказать, восстанавливаем присущие объектам цвета, как бы отбрасываем оттенок, вызванный освещением. Находясь в фотолаборатории, при свете красногофотографического фонаря невозможно найти красную бумажку, так как все бумажки кажутся белыми.

Аналогичное явление имеет место в тех случаях, когда мы одновременно наблюдаем объекты, находящиеся на свету и в тени. Два совершенно одинаковых по яркости объекта, находясь один в тени, а другой на свету, кажутся различными по светлоте; затененный объект несколько высветляется. Поэтому, когда художник пишет с натуры, он должен охватывать глазом одновременно весь изображаемый объект и всю окружающую его обстановку, а не всматриваясь в него по частям; в противном случае малоопытный живописец запутается в цветовых отношениях.

При красном свете восходящего или заходящего солнца все цвета краснеют, красные становятся более насыщенными, а зеленые сильно темнеют, теряя насыщенность (ахроматизируются). Иные зеленые при красном освещении становятся неотличимыми от черных. Листья же деревьев краснеют (красящее вещество листьев - хлорофил - отражает в некотором количестве красный свет).

Общее правило, касающееся изменения цветов при цветном освещении, можно сформулировать так: цвета одного цветового тона с освещением усиливаются по насыщенности, цвета противоположного тона ахроматизируются (теряют насыщенность или даже чернеют) , все остальные цвета приобретают оттенок освещения, при этом цвета, по тону родственные освещению, светлеют, а приближающиеся к противоположному тону - темнеют.

Противоположные по тону цвета в цветовом круге из восьми и из кратного восьми количества цветов лежат друг против друга (на противоположных концах диаметров): красным противоположны зеленые, оранжевым - голубые, желтым - синие, желто-зеленым - фиолетовые.

Здесь же затронем вопрос изменения цветов, зависящего от интенсивности освещения. Эти изменения объясняются другими причинами, связанными с деятельностью глаза.
При ярком освещении все цвета выбеливаются, становятся белесо­ватыми, а при слепящих яркостях света - желтоватыми. При ярком освещении уменьшается количество различимых цветовых оттенков на светлых поверхностях; при слабом освещении - на темных поверхностях, а также в тенях.

К сказанному надо еще добавить, что цвет на освещенных поверхностях выглядит «плотным», а в полутенях и тенях - «легким», «прозрачным». Рубенсу приписывают следующее высказывание: «Начинайте писать ваши тени легко, избегая вводить в них даже ничтожное количество белил: белила - яд живописи и могут быть вводимы, лишь в светах. Раз белила нарушат прозрачность, золотистость тона и теплоту ваших теней - ваша живопись не будет больше легка, но сделается тяжелой и серой: Совершенно иначе дело обстоит по отношению к светам. Здесь краски могут наноситься корпусно, насколько это нужно, но необходимо, однако, сохранять тона чистыми.

Действительно, в любой картине, где хорошо передан свет, можно видеть прозрачность теней при корпусной плотной кладке в свету. В картинах, хорошо передающих солнечный свет, можно также заметить белесость цвета освещенных объектов.

Начинающие живописцы, стремясь передать в пейзаже солнечный свет, усиливают контрастность теней и желтизну освещенных поверхностей. Это приводит к резкости и жесткости колорита, но не дает эффекта освещения. Добиться такого эффекта можно только на основе полного учета тех изменений, которые претерпевают цвета при том или ином освещении.

Krill Light, а теперь настала пора поговорить об их практическом применении.

Давным давно, во времена 2-ой Мировой Войны, традиционным цветом ночного освещения был красный. Он не засвечивал сетчатку во время ночных операций и не «убивал» зрение, в отличии от обычных ламп белого света. При красной подсветке бойцам требовалось меньшее время на адаптацию в темноте, т. к. их глаза были меньше «нагружены».

Наиболее часто лампы красного света использовались в двух случаях:

  • авиацией (пилотами ночных рейсов, истребителями ночных вылетов),
  • на режимных объектах (особенно тех, которые охранялись патрулем, во время маршрута обхода, попадающего то в тень, то на освещенное место).

В последние годы, с появлением более совершенных технологий в сфере освещения, для ночных операций стали использовать зеленые, либо сине-зеленые источники света. В основном это связано с удобством их применения совместно с прибором ночного видения (пнв), отображающего мир «в зеленых тонах».

Но что лучше для сетчатки и что менее нагружает глаза ночью: красное или же зеленое освещение? У обоих цветов есть свои плюсы и минусы, которые стоит рассмотреть поподробнее.

Самым важным фактором, влияющем на «засветку» ночного зрения является общая яркость светового потока, по-другому называемая «уровнем освещенности». Чем ярче источник света - тем сильнее он «бьет» по глазам, «убивая» темновую адаптацию (световую чувствительность глаз в темноте). Выбор цвета здесь абсолютно неважен - что красный, что зеленый свет при высокой яркости может больше навредить, чем помочь.

Тем не менее, человеческий глаз устроен таким образом, что к зеленому свету он восприимчив в разы больше, нежели к красному. Именно поэтому, используя подсветку зеленого цвета при низких уровнях освещенности, человек способен разглядеть больше, нежели при источниках освещения другого цвета. Иными словами, в случае зеленой подсветки мы получаем лучшую остроту зрения.

Более того - зеленый свет также позволяет провести дифференциацию между цветами. Это значит, что при зеленой подсветке можно различать цветовую гамму объектов, разделяя их по отдельным цветам. Это если, конечно, человек не дальтоник. В том случае, если подсветка красного цвета, сетчатка не всегда способна к различению цветов: все предметы окрашиваются примерно в один тон, различаясь лишь по контрастности и темноте. Самым ярким примером этого служат авиационные летные карты, в которых особые метки сделаны пурпурными буквами (пурпурным цветом).

При зеленом освещении они прекрасно читаются и ясно видимы на поверхности карты, в то время как при красной подсветки эти надписи почти не видны, либо плохо видны в части случаев.

Учитывая все вышесказанное, неудивительно, что современные пилоты предпочитают иметь подсветку зеленого цвета вместо красного. С ней легче видеть в темной кабине, а также намного легче читать записи и изучать карты.
Тем не менее, самой главной проблемой остается общий уровень яркости (мощность светового потока). Чем ярче источник подсветки - тем больший негативный эффект он оказывает на глаз, отключая ночное зрение и увеличивая время на адаптацию в темноте .

Таким образом, единственным правильным решением будет использование источника света с уровнем яркости, отвечающим ситуации. Мощность светового потока не должна превышать ваши нужды. Неважно, будет это подсветка красного, зеленого или сине-зеленого цвета - важно, чтобы она была НЕдостаточно яркой и не засвечивала глаза. Для освещения помещения или местности - слабые и маломощные светилки, излучающие легкий и приглушенный свет. Для подсветки конкретной области или предмета - более яркие источники света узкого (направленного) освещения.
Однако, в том случае, если вам все же нужен источник ЯРКОГО света, следует учитывать, что зеленая подсветка влияет на глаза более негативно, нежели красная. При одинаковой яркости (выше предела, позволяющего не засвечивать сетчатку), красный свет менее «травматичен» сетчатке. Иными словами, яркий зеленый свет более «вредоносен» и будет «бить» по глазам сильнее, нежели красный, и выводить бойца из строя на бОльшее время.

Причиной этого служит то, что наша сетчатка примерно в 100 раз более чувствительная к зеленой и сине-зеленой цветовой гамме, нежели к другим цветам. Это означает, что источник света зеленого цвета даже средней или средне-умеренной яркости может «натворить дел» и оказать сильный негативный эффект на глаза, пагубно влияя на способность видеть во тьме.

Резюмируя вкратце :
При низком уровне яркости зеленый источник дает больше преимуществ, чем красный :

  • - Ночное зрение сохраняет остроту, предметы и объекты видно четче, а их контуры острее
  • - Можно читать текст или карты с большей эффективностью, легко различая цифры и буквы
  • - Возможно различение цветов (т.е. можно более легко отличить один цвет от другого)

При высоком уровне яркости красный источник дает больше преимуществ, нежели зеленый :

  • - Не так сильно повышает темновую дезадаптацию глаз (т.е. снижение их чувствительности к свету)
  • - Больше сохраняет ночное зрение, уменьшая время темновой адаптации
  • - Не так пагубно воздействует на способность глаза воспринимать свет в целом

В качестве заключения можно сказать, что оба цвета хороши - главное выбрать нужный для своих целей. Несмотря на то, что все люди разные и в силу индивидуальных особенностей и физиологии могут видеть в темноте по-разному, факт остается фактом. И красный, и зеленый свет будут адекватно служить вашим нуждам - главное выбрать между сохранением ночного зрения, либо более высоким уровнем освещенности.

Дополнительно о ночном зрении можно прочитать тут :

  • Александр КАРАЯНИ, кандидат психологических наук. «НОЧНОЕ ЗРЕНИЕ ИЛИ КАК ВИДЕТЬ В ТЕМНОТЕ» - информационная статья, краткая выжимка по ночному зрению
  • - информационная статья от Сурв24

Сетчатка состоит из двух видов светочувствительных клеток - палочек и колбочек. Днем, при ярком освещении, мы воспринимаем зрительную картину и различаем цвета с помощью колбочек. При слабом же освещении в действие вступают палочки, которые более чувствительны к свету, но не воспринимают цвета. Поэтому-то в сумерках мы видим все в сером цвете, и даже существует пословица "Ночью все кошки серые

Потому что в глазу есть два типа светочувствительных элементов: колбочки и палочки. Колбочки различают цвета, а палочки различают только интенсивность света, то есть видят всё в черно-белом изображении. Колбочки менее светочувствительны, чем палочки, так что при слабой освещенности они вообще ничего не видят. Палочки же очень чувствительны и реагируют даже на очень слабый свет. Вот поэтому в полутьме мы не различаем цветов, хотя и видим контуры. Кстати, колбочки в основном сконцентрированы в центре поля зрения, а палочки по краям. Этим объясняется то, что наше боковое зрение тоже не очень-то цветное, даже при дневном свете. Кроме того, по этой же самой причине астрономы прошлых веков старались при наблюдениях использовать боковое зрение: в темноте оно острее прямого.

35. Бывает ли 100% белизна и 100% чернота? В каких единицах измеряется белизна ?

В научном цветоведении для оценки светлотных качеств поверхности пользуются также термином «белизна», который имеет особо значение для практики и теории живописи. Термин «белизна» по своему содержанию близок к понятиям «яркость» и «светлота», однако, в отличие от последних, она содержит оттенок качественной характеристики и даже в какой-то мере эстетической.

Что же такое белизна? Белизна характеризует восприятие отражательной способности. Чем больше поверхность отражает падающего на неё света, тем она будет белее, и теоретически идеально белой поверхностью следует считать поверхность, отражающую все падающие на неё лучи, однако практически таких поверхностей не существует, так же как не существует поверхностей, которые полностью поглощали бы падающий на них свет.



Начнём с вопроса, какого цвета бумага в школьных тетрадях, альбомах, книгах?

Вы, наверно, подумали, что за пустой вопрос? Конечно белого. Правильно – белого! Ну, а рама, подоконник, покрашены какой краской? Тоже белой. Всё правильно! А теперь возьмите тетрадный лист, газету, несколько листов из разных альбомов для рисования и черчения, положите их на подоконник и внимательно рассмотрите какого они цвета. Оказывается, будучи белыми, они все разного цвета (правильнее было бы сказать – разного оттенка). Один бело-серый, другой бело-розовый, третий бело-голубой и т.д. Так какой же из них «чисто белый»?

Практически мы называем белыми поверхности, отражающие различную долю света. Например, меловой грунт мы оцениваем как белый грунт. Но стоит на нём выкрасить квадрат цинковыми белилами, как он утратит свою белизну, если же внутри затем закрасить квадрат белилами, имеющими ещё большую отражательную способность, например баритовыми, то первый квадрат также частично утратит свою белизну, хотя все три поверхности мы практически будем считать белыми.

Выходит, что понятие «белизна относительно, но в то же время имеется какой-то рубеж, с которого воспринимаемую поверхность мы начнём считать уже не белой.

Понятие белизны можно выразить математически.

Отношение светового потока, отражённого поверхностью, к потоку, падающему на неё (в процентах) носит название «АЛЬБЕДО» (от лат. albus – белый)

АЛЬБЕДО (от позднелат. albedo – белизна), величина, характеризующая способность поверхности отражать падающий на неё поток электромагнитного излучения или частиц. Альбедо равно отношению отраженного потока к падающему.

Это отношение для данной поверхности в основном сохраняется при различных условиях освещённости, и поэтому белизна является более постоянным качеством поверхности, нежели светлота.

Для белых поверхностей альбедо будет равняться 80 – 95%. Белизна различных белых веществ, таким образом, может быть выражена через отражательную способность.

В.Оствальд даёт следующую таблицу белизны различных белых материалов.

Тело, которое совершенно не отражает света, в физике называется абсолютно чёрным. Но самая чёрная видимая нами поверхность не будет с физической точки зрения абсолютно чёрной. Поскольку она видима, то отражает хоть какую-то долю света и, таким образом, содержит хотя бы ничтожный процент белизны – так же как поверхность, приближающаяся к идеально белой, можно сказать, содержит хотя бы ничтожный процент черноты.

Системы CMYK и RGB.

Система RGB

Первая цветовая система, которую мы рассмотрим, это система RGB (от "red/green/blue" - "красный/зеленый/синий"). Экран компьютера или телевизора (как и всякое другое неизлучающее свет тело) - изначально темный. Его исходным цветом является черный. Все остальные цвета на нем получаются путем использования комбинации таких трех цветов, которые в своей смеси должны образовать белый цвет. Опытным путем была выведена комбинация "красный, зеленый, синий" - RGB (red, green, blue). Черный цвет в схеме отсутствует, так как мы его и так имеем - это цвет "черного" экрана. Значит отсутствие цвета в схеме RGB соответствует черному цвету.

Эта система цветов называется аддитивной (additive), что в грубом переводе означает "складывающая/дополняющая". Иными словами мы берем черный цвет (отсутствие цвета) и добавляем к нему первичные цвета, складывая их друг с другом до белого цвета.

Система CMYK

Для цветов, которые получаются путем смешивания красок, пигментов или чернил на ткани, бумаге, полотне или другом материале, в качестве цветовой модели используется система CMY (от cyan, magenta, yellow - циан, фуксин, желтый). В связи с тем, что чистые пигменты очень дороги, для получения черного (букве K соответствует Black) цвета используется не равная смесь CMY, а просто черная краска

В некотором роде система CMYK действует полностью противоположно, по сравнению с системой RGB. Эта система цветов называется субтрактивной (subtractive), что в грубом переводе означает "вычитающая/исключающая ". Иными словами мы берем белый цвет (присутствие всех цветов) и, нанося и смешивая краски, удаляем из белого определенные цвета вплоть до полного удаления всех цветов - то есть получаем черный.

Бумага является изначально белой. Это означает, что она обладает способностью отражать весь спектр цветов света, который на нее попадает. Чем качественнее бумага, чем лучше она отражает все цвета, тем она нам кажется белее. Чем хуже бумага, чем больше в ней примесей и меньше белил, тем хуже она отражает цвета, и мы считаем ее серой. Сравните качество бумаги элитного журнала и дешевой газеты.

Красители представляют собой вещества, которые поглощают определенный цвет. Если краситель поглощает все цвета кроме красного, то при солнечном свете, мы увидим "красный" краситель и будем считать его "красной краской". Если мы посмотрим на это краситель при свете синей лампы, он станет черным и мы ошибочно примем его за "черную краску".

Путем нанесения на белую бумагу различных красителей, мы уменьшаем количество цветов, которые она отражает. Покрасив бумагу определенной краской мы можем сделать так, что все цвета падающего света будут поглощаться красителем кроме одного - синего. И тогда бумага нам будет казаться выкрашенной в синий цвет. И так далее...Соответственно, существуют комбинации цветов, смешивая которые мы можем полностью поглотить все цвета, отражаемые бумагой, и сделать ее черной. Белый цвет в схеме отсутствует, так как его мы и так имеем - это цвет бумаги. В тех местах, где нужен белый цвет, краска просто не наносится. Значит отсутствие цвета в схеме CMYK соответствует белому цвету.