К понятию о золотом сечении. Шкруднев Федор Дмитриевич

Вырезав квадрат со стороной а из прямоугольника, построенного по принципу золотого сечения, мы получаем новый, уменьшенный прямоугольник с тем же свойством

Золото́е сече́ние (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление, число Фидия) — деление непрерывной величины на части в таком отношении, при котором большая часть так относится к меньшей, как вся величина к большей. Например, деление отрезка АС на две части таким образом, что большая его часть АВ относится к меньшей ВС так, как весь отрезок АС относится к АВ (т. е. |АВ | / |ВС | = |АС | / |АВ |).

Эту пропорцию принято обозначать греческой буквой ϕ (встречается также обозначение τ). Она равна:

Формула «золотых гармоний», дающая пары чисел удовлетворяющие вышеупомянутой пропорции:

В случае с числом параметр m = 1.

В дошедшей до нас античной литературе деление отрезка в крайнем и среднем отношении (ἄκρος καὶ μέσος λόγος ) впервые встречается в «Началах» Евклида (ок . 300 до н. э.), где оно применяется для построения правильного пятиугольника.

C ам термин «золотое сечение» (нем. goldener Schnitt ) был введён немецким математиком Мартином Омом в 1835 году.

Математические свойства

Золотое сечение в пятиконечной звезде

иррациональное алгебраическое число, положительное решение любого из следующих уравнений

представляется цепной дробью

для которой подходящими дробями являются отношения последовательных чисел Фибоначчи . Таким образом, .

В правильной пятиконечной звезде каждый сегмент делится пересекающим его сегментом в золотом сечении (то есть отношение синего отрезка к зелёному, также как красного к синему, также как зелёного к фиолетовому, равны ).

Построение золотого сечения

Вот ещё одно представление:

Геометрическое построение

Золотое сечение отрезка AB можно построить следующим образом: в точке B восстанавливается перпендикуляр к AB , откладывают на нём отрезок BC , равный половине AB , на отрезке AC откладывают отрезок AD , равный AC CB , и наконец, на отрезке AB откладывают отрезок AE , равный AD . Тогда

Золотое сечение и гармония

Принято считать, что объекты, содержащие в себе «золотое сечение», воспринимаются людьми как наиболее гармоничные. Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона якобы свидетельствуют, что египетские мастера пользовались соотношениями золотого сечения при их создании. Архитектор Ле Корбюзье «нашёл», что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса , пропорции фигур соответствуют величинам золотого сечения. Зодчий Хесира , изображённый на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого сечения. В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления, и т. д. и т. п.

"Золотое сечение" в искусстве

Золотое сечение и зрительные центры

Начиная с Леонардо да Винчи, многие художники сознательно использовали пропорции «золотого сечения».

Известно, что Сергей Эйзенштейн искусственно построил фильм Броненосец Потёмкин по правилам «золотого сечения». Он разбил ленту на пять частей. В первых трёх действие разворачивается на корабле. В двух последних — в Одессе, где разворачивается восстание. Этот переход в город происходит точно в точке золотого сечения. Да и в каждой части есть свой перелом, происходящий по закону золотого сечения. В кадре, сцене, эпизоде происходит некий скачок в развитии темы: сюжета, настроения. Эйзенштейн считал, что, так как такой переход близок к точке золотого сечения, он воспринимается как наиболее закономерный и естественный.

Другим примером использования правила «Золотого сечения» в киноискусстве — расположение основных компонентов кадра в особых точках — «зрительных центрах». Часто используются четыре точки, расположенные на расстоянии 3/8 и 5/8 от соответствующих краёв плоскости.

Следует заметить что в вышеописанных примерах фигурировало приблизительное значение "золотого сечения": легко убедиться что ни 3/2 ни 5/3 не равно значению золотого сечения.

Российский зодчий Жолтовский также использовал золотое сечение.

Критика золотого сечения

Есть мнения, что значимость золотого сечения в искусстве, архитектуре и в природе преувеличена и основывается на ошибочных расчётах.

При обсуждении оптимальных соотношений сторон прямоугольников (размеры листов бумаги A0и кратные, размеры фотопластинок (6:9, 9:12) или кадров фотоплёнки (часто 2 : 3), размеры кино- и телевизионных экранов — например, 3:4 или 9:16) были испытаны самые разные варианты. Оказалось, что большинство людей не воспринимает золотое сечение как оптимальное и считает его пропорции «слишком вытянутыми».


Число прочтений: 8112

«Золотое сечение» уже давно стало синонимом слова «гармония». Словосочетание «золотое сечение» обладает просто магическим действием. Если вы выполняете какой-то художественный заказ (неважно, картина это, скульптура или дизайн), фраза «работа сделана в полном соответствии с правилами золотого сечения » может стать прекрасным аргументом в вашу пользу – проверить заказчик скорее всего не сможет, а звучит это солидно и убедительно. При этом немногие понимают, что же скрывается под этими словами. Между тем, разобраться, в том, что такое золотое сечение и как оно работает, достаточно просто.

Золотое сечение – это такое деление отрезка на 2 пропорциональные части, при котором целое так относится к большей части, как большая к меньшей . Математически эта формула выглядит так: с : b = b : а или a : b = b : c .

Итогом алгебраического решения данной пропорции будет иррациональное число Ф (Ф в честь древнегреческого скульптора Фидия).

Я не буду приводить само уравнение, чтобы не загружать текст. При желании, его можно легко найти в сети. Скажу только, что Ф будет приблизительно равным 1,618. Запомните эту цифру, это числовое выражение золотого сечения .

Итак, золотое сечение – это правило пропорции, оно показывает соотношение частей и целого.

На любом отрезке можно найти «золотую точку» — точку, которая делит этот отрезок на части, воспринимаемые как гармоничные. Соответственно, так же можно разделить любой объект. Для примера построим прямоугольник, поделенный в соответствии с «золотой» пропорцией:

Отношение большей стороны получившегося прямоугольника к меньшей будет приблизительно равно 1,6 (заметьте, меньший прямоугольник, получившийся в результате построений, также будет золотым).

Вообще, в статьях, объясняющих принцип золотого сечения , встречается множество подобных рисунков. Объясняется это просто: дело в том, что найти «золотую точку» путем обычного измерения проблематично, поскольку число Ф, как мы помним, иррациональное. Зато, такие задачи легко решаются геометрическими методами, с помощью циркуля и линейки.

Однако, наличие циркуля для применения закона на практике совсем не обязательно. Есть ряд чисел, которые принято считать арифметическим выражением золотого сечения. Это ряд Фибоначчи . Вот этот ряд:

0 1 1 2 3 5 8 13 21 34 55 89 144 и т.д.

Запоминать эту последовательность не обязательно, ее можно легко вычислить: каждое число в ряду Фибоначчи равно сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0,617, а 34: 55 = 0,618.

Один из самых древних (и не потерявших свою привлекательность до сих пор) символов, пентаграмма – прекрасная иллюстрация принципа золотого сечения .

В правильной пятиконечной звезде каждый отрезок делится пересекающим его отрезком в золотом сечении (на приведённом рисунке отношение красного отрезка к зелёному, так же как зелёного к синему, так же как синего к фиолетовому, равны). (цитата из Википедии).

Почему же «золотая пропорция» представляется такой гармоничной?

У теории золотого сечения есть масса как сторонников, так и противников. Вообще, идея о том, что красоту можно измерить и просчитать с помощью математической формулы, симпатична далеко не всем. И, возможно, эта концепция действительно казалась бы надуманной математической эстетикой, если бы не многочисленные примеры природного формообразования, соответствующие золотому сечению .


Сам термин «золотое сечение » ввел Леонардо да Винчи. Будучи математиком, да Винчи также искал гармоничное соотношение для пропорций человеческого тела.

“Если мы человеческую фигуру – самое совершенное творение Вселенной – перевяжем поясом и отмерим потом расстояние от пояса до ступней, то эта величина будет относиться к расстоянию от того же пояса до макушки, как весь рост человека к длине от пояса до ступней”.

Деление тела точкой пупа – важнейший показатель золотого сечения . Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т.д.

Постепенно, золотое сечение превратилось в академический канон, и когда в искусстве назрел бунт против академизма, про золотое сечение на время забыли. Однако, в середине XIX века эта концепция вновь стала популярной благодаря трудам немецкого исследователя Цейзинга. Он проделал множество измерений (около 2000 человек), и сделал вывод, что золотое сечение выражает средний статистический закон. Помимо людей, Цейзинг исследовал архитектурные сооружения, вазы, растительный и животный мир, стихотворные размеры и музыкальные ритмы. Согласно его теории, золотое сечение является абсолютом, универсальным правилом для любых явлений природы и искусства.

Принцип золотой пропорции применяется в разных сферах, не только в искусстве, но и в науке и в технике. Будучи настолько универсальной, она, конечно, подвергается множеству сомнений. Часто проявления золотого сечения объявляются результатом ошибочных вычислений или простого совпадения, (а то и подтасовки). В любом случае, к любым замечаниям, как сторонников теории, так и противников, стоит относиться критически.

А о том, как этот принцип применять на практике, можно прочитать .

Кандидат технических наук В. БЕЛЯНИН, ведущий научный сотрудник РНЦ "Курчатовский институт", Е. РОМАНОВА, студентка МАДИ (ГТУ)

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Золотую пропорцию в школе не "проходят". И когда один из авторов предлагаемой ниже статьи (кандидат технических наук В. Белянин) рассказал о золотом сечении абитуриентке, собравшейся поступать в МАДИ, в процессе подготовки к экзаменам в институт, задача неожиданно вызвала живой интерес и массу вопросов, на которые "с ходу" не было ответов. Решили искать их вместе, и тогда обнаружились тонкости в золотой пропорции, ускользавшие от исследователей ранее. Совместное творчество привело к работе, которая лишний раз подтверждает созидательные возможности молодежи и вселяет надежду, что язык науки утерян не будет.

Узоры математики, как и узоры художника или узоры поэта, должны быть красивы; идеи, как и краски или слова, должны сочетаться гармонически. Красота является первым критерием: в мире нет места для безобразной математики.
Дж. Х. Харди

Красота математической задачи служит одним из важнейших стимулов ее нескончаемого развития и причиной порождения многочисленных приложений. Порой проходят десятки, сотни, а иногда и тысячи лет, но люди вновь и вновь находят неожиданные повороты в хорошо известном решении и его интерпретации. Одной из таких долгоживущих и увлекательных задач оказалась задача о золотом сечении (ЗС), отражающая элементы изящества и гармонии окружающего нас мира. Нелишне напомнить, кстати, что, хотя сама пропорция была известна еще Евклиду, термин "золотое сечение" ввел Леонардо да Винчи (см. "Наука и жизнь" ).

Геометрически золотое сечение подразумевает деление отрезка на две неравные части так, чтобы большая часть была средним пропорциональным между всем отрезком и меньшей частью (рис. 1).

Алгебраически это выражается следующим образом:

Исследование этой пропорции еще до ее решения показывает, что между отрезками a и b существуют по крайней мере два удивительных соотношения. Например, из пропорции (1) легко получается выражение,

которое устанавливает пропорцию между отрезками a , b , их разностью и суммой. Поэтому о золотом сечении можно сказать иначе: два отрезка находятся в гармоничном соотношении, если их разность относится к меньшему отрезку так, как больший отрезок относится к их сумме.

Второе соотношение получается, если исходный отрезок принять равным единице: a + b = 1, что очень часто используется в математике. В таком случае

a 2 - b 2 = a - b = ab .

Из этих результатов следуют два удивительных соотношения между отрезками а и b :

a 2 - b 2 = a - b = ab ,(2)

которые будут использованы в дальнейшем.

Перейдем теперь к решению пропорции (1). На практике используют две возможности.

1. Обозначим отношение a /b через. Тогда получим уравнение

x 2 - x - 1 = 0, (3)

Обычно рассматривают только положительный корень x 1 , дающий простое и наглядное деление отрезка в заданной пропорции. Действительно, если принять целый отрезок за единицу, то, используя значение этого корня x 1 , получим a ≈ 0,618, b ≈ 0,382.

Именно положительный корень x 1 уравнения (3) наиболее часто называют золотой пропорцией или пропорцией золотого сечения. Соответствующее геометрическое деление отрезка называют золотым сечением (точка С на рис. 1).

Для удобства дальнейшего изложения обозначим x 1 = D . Общепризнанного обозначения для золотого сечения до сих пор нет. Обусловлено это, видимо, тем, что под ним понимают иногда и другое число, о чем будет сказано ниже.

Оставляемый по обыкновению в стороне отрицательный корень x 2 приводит к менее наглядному делению отрезка на две неравные части. Дело в том, что он дает делящую точку С , которая лежит вне отрезка (так называемое внешнее деление). Действительно, если a + b = 1, то, используя корень x 2 , получим a ≈ -1,618, b ≈ 2,618. Поэтому отрезок a необходимо откладывать в отрицательном направлении (рис. 2).

2. Второй вариант решения пропорции (1) принципиально не отличается от первого. Будем считать неизвестным отношение b /a и обозначим его через y . Тогда получим уравнение

y 2 + y -1 = 0 , (4)

которое имеет иррациональные корни

Если a + b = 1, то, используя корень y 1 , получим a = y 1 ≈ 0,618, b ≈ 0,382. Для корня y 2 получим a ≈ -1,618, b ≈ 2,618. Геометрическое деление отрезка в пропорции золотого сечения с использованием корней y 1 и y 2 полностью идентично предыдущему варианту и соответствует рис. 1 и 2.

Положительный корень y 1 непосредственно дает искомое решение задачи, и его также называют золотой пропорцией .

Для удобства обозначим значение корня y 1 = d.

Таким образом, в литературе золотую пропорцию математически выражают числом D 1,618 или числом d 0,618, между которыми существуют две изумительные связи:

Dd = 1 и D - d = 1. (5)

Доказано, что другой подобной пары чисел, обладающих этими свойствами, не существует.

Используя оба обозначения для золотой пропорции, запишем решения уравнений (3) и (4) в симметричном виде: = D , = -d , = d , = -D .

Необычные свойства золотого сечения достаточно подробно описаны в литературе . Они настолько удивительны, что покоряли разум многих выдающихся мыслителей и создали вокруг себя ореол таинственности.

Золотая пропорция встречается в конфигурации растений и минералов, строении частей Вселенной, музыкальном звукоряде. Она отражает глобальные принципы природы, пронизывая все уровни организации живых и неживых объектов. Ее используют в архитектуре, скульптуре, живописи, науке, вычислительной технике, при проектировании предметов быта. Творения, несущие в себе конфигурацию золотого сечения, представляются соразмерными и согласованными, всегда приятны взгляду, да и сам математический язык золотой пропорции не менее изящен и элегантен.

Кроме равенств (5) из соотношения (2) можно выделить три интересные соотношения, которые обладают определенным совершенством, выглядят вполне привлекательно и эстетично:

(6)

Величие и глубину природы можно ощущать не только, например, при созерцании звезд или горных вершин, но и вглядываясь в некоторые удивительные формулы, очень ценимые математиками за их красоту. К ним можно отнести изящные соотношения золотой пропорции, фантастическую формулу Эйлера e iπ = -1 (где i = √-1), формулу, определяющую знаменитое число Непера (основание натуральных логарифмов): e = lim(1 + 1/n ) n = 2,718 при n → ∞, и многие другие.

После решения пропорции (1) ее идея кажется довольно простой, но, как это часто бывает со многими на первый взгляд простыми задачами, в ней скрыто немало тонкостей. Одной из таких замечательных тонкостей, мимо которой до сих пор проходили исследователи, является связь корней уравнений (3) и (4) с углами трех замечательных треугольников.

Чтобы убедиться в этом, рассмотрим, каким образом одномерный отрезок, разделенный в пропорции золотого сечения, может быть легко преобразован в двумерный образ в виде треугольника. Для этого, используя вначале рис. 1, отложим на отрезке АВ длину отрезка a дважды - от точки А в сторону точки В и, наоборот, от точки В в сторону А . Получим две точки С 1 и С 2 , делящие отрезок АВ с разных концов в пропорции золотого сечения (рис. 3). Считая равные отрезки АС 1 и ВС 2 радиусами, а точки А и В центрами окружностей, проведем две дуги до их пересечения в верхней точке С . Соединив точки А и С , а также В и С, получим равнобедренный треугольник АВС со сторонами АВ = a + b = 1, АС = = ВС = a = d ≈ 0,618. Величину углов при вершинах А и В обозначим α, при вершине С - β. Вычислим эти углы.

По теореме косинусов

(АВ ) 2 = 2(АС ) 2 (1 - cos β).

Подставив численные значения отрезков АВ и АС в эту формулу, получим

Аналогично получаем

(8)

Выход золотой пропорции на двумерный образ позволил связать корни уравнений (3) и (4) с углами треугольника АВС , который можно назвать первым треугольником золотой пропорции.

Выполним аналогичное построение, используя рис. 2. Если на продолжении отрезка АВ отложить от точки В вправо отрезок, равный по величине отрезку a , и повернуть вокруг центров А и В вверх оба отрезка как радиусы до их соприкосновения, то получим второй треугольник золотой пропорции (рис. 4). В этом равнобедренном треугольнике сторона АВ = a + b = 1, сторона АС = ВС = D ≈1,618, и поэтому по формуле теоремы косинусов получаем

(9)

Угол a при вершине С равен 36 о и связан с золотой пропорцией соотношением (8). Как и в предыдущем случае, углы этого треугольника связаны с корнями уравнений (3) и (4).

Второй треугольник золотой пропорции служит основным составляющим элементом правильного выпуклого пятиугольника и задает пропорции правильного звездчатого пятиугольника (пентаграммы), свойства которых подробно рассмотрены в книге .

Звездчатый пятиугольник - фигура симметричная, и в то же время в соотношениях ее отрезков проявляется асимметрическая золотая пропорция. Подобное сочетание противоположностей всегда притягивает глубоким единством, познание которого позволяет проникнуть в скрытые законы природы и понять их исключительную глубину и гармонию. Пифагорейцы, покоренные созвучием отрезков в звездчатом пятиугольнике, выбрали его символом своего научного сообщества.

Со времен астронома И. Кеплера (XVII век) иногда высказываются различные точки зрения относительно того, что обладает большей фундаментальностью - теорема Пифагора или золотая пропорция. Теорема Пифагора лежит в основании математики, это один из ее краеугольных камней. Золотое сечение лежит в основании гармонии и красоты мироздания. На первый взгляд оно несложно для понимания и не обладает значительной основательностью. Тем не менее некоторые его неожиданные и глубокие свойства постигаются только в последнее время , что говорит о необходимости с почтением относиться к его скрытой тонкости и возможной универсальности. Теорема Пифагора и золотая пропорция в своем развитии тесно переплетаются одна с другой и геометрическими и алгебраическими свойствами. Между ними нет ни пропасти, ни принципиальных различий. Они не конкурируют, у них разные предназначения.

Вполне возможно, что обе точки зрения равноправны, так как существует прямоугольный треугольник, содержащий в себе разнообразные особенности золотой пропорции. Другими словами, существует геометрическая фигура, достаточно полно объединяющая два математических восхитительных факта - теорему Пифагора и золотую пропорцию.

Чтобы построить такой треугольник, достаточно продолжить сторону ВС треугольника АВС (рис. 4) до пересечения в точке Е с перпендикуляром, восстановленным в точке А к стороне АВ (рис. 5).

Во внутреннем равнобедренном треугольнике АСЕ угол φ (угол АСЕ ) равен 144 о, а угол ψ (углы ЕАС и АЕС ) равен 18 о. Сторона АС = СЕ = СВ = D . Используя теорему Пифагора, легко получить, что длина катета

Используя этот результат, легко приходим к соотношению

Итак, найдена непосредственная связь корня y 2 уравнения (4) - последнего из корней уравнений (3) и (4) - с углом 144 о. В связи с этим треугольник АСЕ можно назвать третьим треугольником золотой пропорции.

Если в замечательном прямоугольном треугольнике АВЕ провести биссектрису угла САВ до пересечения со стороной ЕВ в точке F , то увидим, что вдоль стороны АВ располагаются четыре угла: 36 о, 72 о, 108 о и 144 о, с которыми корни уравнений золотой пропорции имеют непосредственную связь (соотношения (7) - (10)). Таким образом, в представленном прямоугольном треугольнике содержится вся плеяда равносторонних треугольников, обладающих особенностями золотого сечения. Кроме того, весьма примечательно то, что на гипотенузе любые два отрезка, ЕС = D и СF = 1,0 находятся в соотношении золотой пропорции с = d . Угол ψ связан с корнями D и d уравнений (3) и (4) соотношениями

.

В основу представленных выше построений равнобедренных треугольников, углы которых связаны с корнями уравнений золотой пропорции, положены исходный отрезок АВ и его части a и b . Однако золотое сечение позволяет моделировать не только описанные выше треугольники, но и различные другие геометрические фигуры, несущие в себе элементы гармоничных отношений.

Приведем два примера подобных построений. В первом - рассмотрим отрезок АВ , представленный на рис. 1. Пусть точка С - центр окружности, отрезок b - радиус. Проведем радиусом b окружность и касательные к ней из точки А (рис. 6). Соединим точки касания E и F с точкой С . В результате получим асимметричный ромб АЕСF , в котором диагональ АС делит его на два равных прямоугольных треугольника АСЕ и АСF .

Обратим более пристальное внимание на один из них, например на треугольник АСЕ . В этом треугольнике угол АЕС - прямой, гипотенуза АС = a , катет СЕ = b и катет АЕ = √ab ≈ 0,486, что следует из соотношения (2). Следовательно, катет АЕ является средним геометрическим (пропорциональным) между отрезками a и b , то есть выражает геометрический центр симметрии между числами a ≈ 0,618 и b ≈ 0,382.

Найдем значения углов этого треугольника:

Как и в предыдущих случаях, углы δ и ε связаны через косинус с корнями уравнений (3) и (4).

Заметим, что асимметричный ромб, подобный ромбу AECF , получается при проведении касательных из точки В к окружности радиуса a и c центром в точке А .

Асимметричный ромб AECF получен иным путем в книге при анализе формообразования и явлений роста в живой природе. Прямоугольный треугольник АЕС назван в этой работе "живым" треугольником, так как способен порождать наглядные образы, соответствующие различным структурным элементам природы, и служить ключом при построении геометрических схем начала развития некоторых живых организмов.

Второй пример связан с первым и третьим треугольниками золотого сечения. Образуем из двух равных первых треугольников золотой пропорции ромб с внутренними углами 72 о и 108 о. Аналогично объединим два равных третьих треугольника золотой пропорции в ромб с внутренними углами 36 о и 144 о. Если стороны этих ромбов равны между собой, то ими можно заполнить бесконечную плоскость без пустот и перекрытий. Соответствующий алгоритм заполнения плоскости разработал в конце 70-х годов ХХ века физик-теоретик из Оксфордского университета Р. Пенроуз. Причем выяснилось, что в получающейся мозаике невозможно выделить элементар ную ячейку с целым числом ромбов каждого вида, трансляция которой позволяла бы получить всю мозаику. Но самым замечательным оказалось то, что в бесконечной мозаике Пенроуза отношение числа "узких" ромбов к числу "широких" точно равно значению золотой пропорции d = 0,61803...!

В этом примере удивительным образом соединились все корни золотого сечения, выраженные через углы, с одним из случаев нетривиального заполнения бесконечной плоскости двумя элементарными фигурами - ромбами.

В заключение отметим, что приведенные выше разнообразные примеры связи корней уравнений золотой пропорции с углами треугольников иллюстрируют тот факт, что золотая пропорция более емкая задача, чем это представлялось ранее. Если прежде сферой приложения золотой пропорции считались в конечном итоге соотношения отрезков и различные последовательности, связанные с численными значениями ее корней (числа Фибоначчи), то теперь обнаруживается, что золотая пропорция может генерировать разнообразные геометрические объекты, а корни уравнений имеют явное тригонометрическое выражение.

Авторы отдают себе отчет, что высказанная выше точка зрения относительно изящества математических соотношений, связанных с золотой пропорцией, отражает личные эстетические переживания. В современной философской литературе понятия эстетики и красоты трактуются довольно широко и используются скорее на интуитивном уровне. Эти понятия отнесены главным образом к искусству. Содержание научного творчества в эстетическом плане в литературе практически не рассматривается. В первом приближении к эстетическим параметрам научных исследований можно отнести их сравнительную простоту, присущую им симметрию и способность порождать наглядные образы. Всем этим эстетическим параметрам отвечает задача, получившая название "золотая пропорция". В целом же проблемы эстетики в науке далеки от своего решения, хотя и представляют большой интерес.

Интуитивно чувствуется, что золотая пропорция все еще скрывает свои тайны. Некоторые из них, вполне возможно, лежат на поверхности, ожидая необычного взгляда своих новых исследователей. Знание свойств золотой пропорции может служить творческим людям хорошим фундаментом, придавать им уверенность и в науке и в жизни .

ЛИТЕРАТУРА

1. Шевелев И. Ш., Марутаев И. А., Шмелев И. П. Золотое сечение: Три взгляда на природу гармонии. - М.: Стройиздат, 1990. - 343 с.

2. Стахов А. П. Коды золотой пропорции. - М.: Радио и связь, 1984. - 152 с.

3. Васютинский Н. А. Золотая пропорция. - М.: Молодая гвардия, 1990. - 238 с.

4. Коробко В. И. Золотая пропорция: Некоторые философские аспекты гармонии. - М. - Орел: 2000. - 204 с.

5. Урманцев Ю. А. Золотое сечение // Природа, 1968, № 11.

6. Попков В. В., Шипицын Е. В. Золотое сечение в цикле Карно // УФН, 2000, т. 170, № 11.

7. Константинов И. Фантазии с додекаэдром // Наука и жизнь, 2001, № 2.

8. Шевелев И. Ш. Геометрическая гармония // Наука и жизнь, 1965, № 8.

9. Гарднер М. От мозаик Пенроуза к надежным шифрам . - М. : Мир, 1993.

Золотое сечение - это универсальное проявление структурной гармонии. Оно встречается в природе, науке, искусстве – во всем, с чем может соприкоснуться человек. Однажды познакомившись с золотым правилом, человечество больше ему не изменяло.

ОПРЕДЕЛЕНИЕ

Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая - ко всему целому. Приблизительная его величина – 1,6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62% на 38%. Это соотношение действует в формах пространства и времени.

Древние видели в золотом сечении отражение космического порядка, а Иоганн Кеплер называл его одним из сокровищ геометрии. Современная наука рассматривает золотое сечение как «ассиметричную симметрию», называя его в широком смысле универсальным правилом, отражающим структуру и порядок нашего мироустройства.

ИСТОРИЯ

Представление о золотых пропорциях имели древние египтяне, знали о них и на Руси, но впервые научно золотое сечение объяснил монах Лука Пачоли в книге «Божественная пропорция» (1509), иллюстрации к которой предположительно сделал Леонардо да Винчи. Пачоли усматривал в золотом сечении божественное триединство: малый отрезок олицетворял Сына, большой – Отца, а целое – Святой дух.

Непосредственным образом с правилом золотого сечения связано имя итальянского математика Леонардо Фибоначчи. В результате решения одной из задач ученый вышел на последовательность чисел, известную сейчас как ряд Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. На отношение этой последовательности к золотой пропорции обратил внимание Кеплер: «Устроена она так, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности». Сейчас ряд Фибоначчи - это арифметическая основа для расчетов пропорций золотого сечения во всех его проявлениях.

Леонардо да Винчи также много времени посвятил изучению особенностей золотого сечения, скорее всего, именно ему принадлежит и сам термин. Его рисунки стереометрического тела, образованного правильными пятиугольниками, доказывают, что каждый из полученных при сечении прямоугольников дает соотношения сторон в золотом делении.

Со временем правило золотого сечения превратилось в академическую рутину, и только философ Адольф Цейзинг в 1855 году вернул ему вторую жизнь. Он довел до абсолюта пропорции золотого сечения, сделав их универсальными для всех явлений окружающего мира. Впрочем, его «математическое эстетство» вызывало много критики.

ПРИРОДА

Даже не вдаваясь в расчеты, золотое сечение можно без труда обнаружить в природе. Так, под него попадают соотношение хвоста и тела ящерицы, расстояния между листьями на ветке, есть золотое сечение и в форме яйца, если условную линию провести через его наиболее широкую часть.

Белорусский ученый Эдуард Сороко, который изучал формы золотых делений в природе, отмечал, что все растущее и стремящееся занять свое место в пространстве, наделено пропорциями золотого сечения. По его мнению, одна из самых интересных форм это закручивание по спирали.

Еще Архимед, уделяя внимание спирали, вывел на основе ее формы уравнение, которое и сейчас применяется в технике. Позднее Гете отмечал тяготение природы к спиральным формам, называя спираль «кривой жизни». Современными учеными было установлено, что такие проявления спиральных форм в природе как раковина улитки, расположение семян подсолнечника, узоры паутины, движение урагана, строение ДНК и даже структура галактик заключают в себе ряд Фибоначчи.

ЧЕЛОВЕК

Модельеры и дизайнеры одежды все расчеты делают, исходя из пропорций золотого сечения. Человек – это универсальная форма для проверки законов золотого сечения. Конечно, от природы далеко не у всех людей пропорции идеальны, что создает определенные сложности с подбором одежды.

В дневнике Леонардо да Винчи есть рисунок вписанного в окружность обнаженного человека, находящегося в двух наложенных друг на друга позициях. Опираясь на исследования римского архитектора Витрувия, Леонардо подобным образом пытался установить пропорции человеческого тела. Позднее французский архитектор Ле Корбюзье, используя «Витрувианского человека» Леонардо, создал собственную шкалу «гармонических пропорций», повлиявшую на эстетику архитектуры XX века.

Адольф Цейзинг, исследуя пропорциональность человека, проделал колоссальную работу. Он измерил порядка двух тысяч человеческих тел, а также множество античных статуй и вывел, что золотое сечение выражает среднестатистический закон. В человеке ему подчинены практически все части тела, но главный показатель золотого сечения это деление тела точкой пупа.
В результате измерений исследователь установил, что пропорции мужского тела 13:8 ближе к золотому сечению, чем пропорции женского тела – 8:5.

ИСКУССТВО ПРОСТРАНСТВЕННЫХ ФОРМ

Художник Василий Суриков говорил, «что в композиции есть непреложный закон, когда в картине нельзя ничего ни убрать, ни добавить, даже лишнюю точку поставить нельзя, это настоящая математика». Долгое время художники следовали этому закону интуитивно, но после Леонардо да Винчи процесс создания живописного полотна уже не обходится без решения геометрических задач. Например, Альбрехт Дюрер для определения точек золотого сечения использовал изобретенный им пропорциональный циркуль.

Искусствовед Ф.В.Ковалев, подробно исследовав картину Николая Ге «Александр Сергеевич Пушкин в селе Михайловском», отмечает, что каждая деталь полотна, будь то камин, этажерка, кресло или сам поэт, строго вписаны в золотые пропорции.

Исследователи золотого сечения без устали изучают и замеряют шедевры архитектуры, утверждая, что они стали таковыми, потому что созданы по золотым канонам: в их списке Великие пирамиды Гизы, Собор Парижской Богоматери, Храм Василия Блаженного, Парфенон.

И сегодня в любом искусстве пространственных форм стараются следовать пропорциям золотого сечения, так как они, по мнению искусствоведов, облегчают восприятие произведения и формируют у зрителя эстетическое ощущение.

СЛОВО, ЗВУК И КИНОЛЕНТА

Формы временно?го искусства по-своему демонстрируют нам принцип золотого деления. Литературоведы, к примеру, обратили внимание, что наиболее популярное количество строк в стихотворениях позднего периода творчества Пушкина соответствует ряду Фибоначчи – 5, 8, 13, 21, 34.

Действует правило золотого сечения и в отдельно взятых произведениях русского классика. Так кульминационным моментом «Пиковой дамы» является драматическая сцена Германа и графини, заканчивающаяся смертью последней. В повести 853 строки, а кульминация приходится на 535 строке (853:535=1,6) – это и есть точка золотого сечения.

Советский музыковед Э.К.Розенов отмечает поразительную точность соотношений золотого сечения в строгих и свободных формах произведений Иоганна Себастьяна Баха, что соответствует вдумчивому, сосредоточенному, технически выверенному стилю мастера. Это справедливо и в отношении выдающихся творений других композиторов, где на точку золотого сечения обычно приходится наиболее яркое или неожиданное музыкальное решение.

Кинорежиссер Сергей Эйзенштейн сценарий своего фильма «Броненосец Потёмкин» сознательно согласовывал с правилом золотого сечения, разделив ленту на пять частей. В первых трех разделах действие разворачивается на корабле, а в последних двух – в Одессе. Переход на сцены в городе и есть золотая середина фильма.

Геометрия владеет двумя сокровищами: одно из них - это теорема Пифагора, а другое - деление отрезка в среднем и крайнем отношении. Первое можно сравнить с мерой золота; второе же больше напоминает драгоценный камень.

И. Кеплер

А знаете ли вы, что, идя в школу или на работу, слушая музыку, занимаясь домашним хозяйством, отдыхая в отпуске на море или подписывая деловые контракты, мы постоянно сталкиваемся с примерами золотого сечения. Растения, животные, посуда и даже некоторые буквы построены по принципу золотого сечения. Золотое сечение обнаружено даже в молекуле ДНК.

Я бы хотела познакомить вас с этим невероятным, на мой взгляд, явлением поближе и рассказать конкретно, где и как мы с ним сталкиваемся и в чём применяем.

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н. э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе ив рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления. Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Что такое золотое сечение, применение золотого сечения в математике.

Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a: b = b: c или с: b = b: а.

Построить такую пропорцию можно следующим образом:

Из точки В восстанавливаем перпендикуляр, равный половине АВ. Образовавшаяся точка С соединяется линией с точкой А. На полученной линии откладываем отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Свойства золотого сечения описываются уравнением: x*х – x – 1 = 0.

Решение этого уравнения:

В природе так же было открыто второе золотое сечение, которое вытекает из основного сечения и даёт другое отношение 44:56. Эта пропорция была обнаружена в архитектуре, а так же имеет место при построении композиций изображений удлинённого горизонтального формата.

Данный отрезок АВ делим в пропорции золотого сечения. Из точки С восстанавливаем перпендикуляр СD. Радиусом АВ находим точку D, затем соединяем её линией с точкой А. Прямой угол АСD делим пополам. Из точки С проводим линию до пересечения с АD. Полученную точку назовём буквой Е, которая и делит отрезок АD в отношении 44:56.

На рисунке показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.

Если в «золотом прямоугольнике» ABCD вычленить квадрат AEFD, то оставшаяся часть EBCF, оказывается, является новым «золотым прямоугольником», который снова может быть разделен на квадрат GHCF и меньший «золотой прямоугольник» EBHG. Повторяя многократно эту процедуру, мы получим бесконечную последовательность квадратов и золотых прямоугольников, которые в пределе сходятся к точке O. Заметим, что такое бесконечное повторение одних и тех же геометрических фигур, то есть квадрата и золотого прямоугольника, вызывает у нас неосознанное эстетическое чувство ритма и гармонии. Считается, что именно это обстоятельство является причиной того, что многие предметы прямоугольной формы, с которыми человек имеет дело (спичечные коробки, зажигалки, книги, чемоданы), зачастую имеют форму золотого прямоугольника. Например, мы широко пользуемся кредитными карточками в нашей повседневной жизни, но не обращаем внимание на то, что во многих случаях кредитные карточки имеют форму золотого прямоугольника.

Золотой прямоугольник и кредитная карта

Пентаграмма и «Пентагон»

Если в пентаграмме провести все диагонали, то в результате мы получим хорошо известную нам пятиугольную звезду. Доказано, что точки пересечения диагоналей в пентаграмме всегда являются точками золотого сечения диагоналей. При этом эти точки образуют новую пентаграмму FGHKL. В новой пентаграмме можно провести диагонали, пересечение которых образуют еще одну пентаграмму, и это процесс может быть продолжен до бесконечности. Таким образом, пентаграмма ABCDE как бы состоит из бесконечного числа пентаграмм, которые каждый раз образуются точками пересечения диагоналей. Эта бесконечная повторяемость одной и той же геометрической фигуры создает чувство ритма и гармонии, которое неосознанно фиксируется нашим разумом. Пентаграмма вызывала особое восхищение у пифагорейцев и считалась их главным опознавательным знаком. Здание военного ведомства США имеет форму пентаграммы и получило название «Пентагон», что значит правильный пятиугольник.

Итак, я рассказала, что такое золотое сечение, а теперь, так как мой доклад посвящён применению золотого сечения, то я сейчас об этом и расскажу.

Задача о кроликах. Числа Фибоначчи.

ЗАДАЧА О КРОЛИКАХ

Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течение года, если природа кроликов такова, что через месяц пара кроликов производит на свет др. пару, а рождают кролики со второго месяца после своего рождения.

Ясно, что если считать первую пару кроликов новорожденными, то на второй месяц мы будем по прежнему иметь одну пару; на 3-й месяц - 1+1=2; на 4-й месяц - 2+1=3 пары (ибо из двух имеющихся пар потомство дает лишь одна пара); на 5-й месяц - 3+2=5 пар (лишь 2 родившиеся на 3-й месяц пары дадут потомство на 5-й месяц); на 6-й месяц - 5+3=8 пар (ибо потомство дадут только те пары, которые родились на 4-м месяце) и т. д.

Из этой задачи последовало открытие некого ряда последовательности натуральных чисел каждый член, которой, начиная с третьего равен сумме двух предыдущих членов: Uk=1,1,2,3,5,8,13,21,34,55,89,144,233,377,. ,Такая последовательность получила название Последовательность Фибоначчи, а её члены числами Фибоначчи. Отношение последующего члена ряда к предыдущему стремится к коэффициенту золотого сечения

В алгебре общепринято его обозначение греческой буквой фи

Золотое сечение не обошло и человека

Золотое сечение является основой построения гармоничных форм, так как является абсолютным законом формообразования в природе, частью которой мы являемся. Законы гармонии – есть числовые законы.

Моделируя обычного человека, мы, скорее всего, не берем линейку и калькулятор, высчитывать золотые пропорции. Мы просто интуитивно ощущаем эти формы, ибо формы человеческого существа попадаются нам на глаза чаще, чем что-либо другое, но создавая модель необычного существа, растения, сооружения, нам стоит использовать знания геометрии и золотого сечения, чтобы на результат работы можно было смотреть без отвращения, хотя если вы добиваетесь как раз чувства отвращения, то вы знаете, что вы должны делать.

В любом случае, знание законов природы (числовых законов), помогает нам как можно быстрее достичь желаемого результата.

Немецкий профессор Цейзинг в середине 18 столетия проделал огромную работу: он измерил более 2000 тел и высказал предположение, что золотое сечение выражает среднестатистический закон: деление тела точкой пупа – один из основных показателей золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т. д.

у маленьких детей (около года) пропорция составляет отношение 1: 1.

Недавно наш современник, американский хирург Стивен Маркварт создал, используя принцип "золотого сечения", геометрическую маску, которая может служить эталоном прекрасного лица. Чтобы узнать, соответствует ли лицо идеалу, достаточно скопировать маску на прозрачную пленку и наложить ее на фотографию соответствующего размера.

Так, разделив в отношении" золотого сечения" отрезок, заключенный между макушкой и адамовым яблоком, мы получим точку, лежащую на линии бровей (В). При дальнейшем золотом делении образовавшихся частей получим последовательно кончик носа (С), конец подбородка (D).

Золотое сечение в ухе человека.

Во внутреннем ухе человека имеется орган Cochlea ("Улитка"), который исполняет функцию передачи звуковой вибрации. Эта костевидная структура наполнена жидкостью и также сотворена в форме улитки, содержащую в себе стабильную логарифмическую форму спирали = 73º 43’.

Раз уж золотое сечение коснулось человека, то скажу, что оно присутствует даже в строении молекулы ДНК.

Все сведения о физиологических особенностях живых существ хранятся в микроскопической молекуле ДНК, строение которой также содержит в себе закон золотой пропорции. Молекула ДНК состоит из двух вертикально переплетенных между собой спиралей. Длина каждой из этих спиралей составляет 34 ангстрема, ширина 21 ангстрема. (1 ангстрем - одна стомиллионная доля сантиметра). Так вот 21 и 34 - это цифры, следующие друг за другом в последовательности чисел Фибоначчи, то есть соотношение длины и ширины логарифмической спирали молекулы ДНК несет в себе формулу золотого сечения 1:1,618.

Каждый из нас хоть раз в своей жизни да был на море и держал в своих руках ракушку спиралевидной формы. Ну, так вот: такая раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.

Спираль Архимеда

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

Золотое сечение в живописи и фотографии.

В фотографии

Когда мы хотим сделать красивый снимок, то часто замечаем, что не умеем мысленно расставлять объекты так, чтобы они потом смотрелись на готовой фотографии в наилучшем виде. В этом нам может помочь правило золотого сечения. С помощью горизонтальных и вертикальных линий мы мысленно делим видоискатель на девять одинаковых секторов. Четыре центральные точки пересечения горизонтальных и вертикальных линий и будут для нас ключевыми.

Практическое использование правила «Золотого сечения» при компоновке кадра.

Ниже, приведены различные варианты сеток, созданных на базе по правилу «Злотого сечения», для различных композиционных вариантов. Для того, что бы понять принципы необходимо самостоятельно экспериментально, попробовать, совместить сетки с вашими фотографиями. Базовые сетки, выглядят так:

Вот фотография кота, который расположен в произвольном месте кадра.

Теперь условно поделим кадр на отрезки, в пропорции по 1. 62 общей длины от каждой стороны кадра. В местах пересечения отрезков и будут основные "зрительные центры", в которых стоит разместить необходимые ключевые элементы изображения.

Перенесем нашего кота в точки "зрительных центров".

Вот так теперь выглядит композиция. Правда, гораздо лучше?

Для того чтобы понять суть золотого сечения, попробуйте сами сделать несколько фотографий человека, сидящего на садовой скамейке. Убедитесь, что наиболее гармоничной получится фотография, на которой человек сидит не в центре и не с краю, а в точке, соответствующей золотому сечению (делящий скамейку примерно в соотношении 2:3).

В живописи

Мастера Древней Греции, умевшие сознательно пользоваться золотой пропорцией, что, в сущности, весьма просто, умело применяли ее гармонические величины во всех видах искусства и достигли такого совершенства строения форм, выражающих их общественные идеалы, какое редко встречается в практике мирового искусства. Вся античная культура прошла под знаком золотой пропорции. Знали эту пропорцию и в Древнем Египте. Я покажу это на примере таких живописцев как: Рафаэль, Леонардо да Винчи, Боттичелли, Шишкин.

На подготовительном эскизе Рафаэля проведены красные линии, идущие от смыслового центра композиции - точки, где пальцы воина сомкнулись вокруг лодыжки ребенка, - вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза. Если естественным образом соединить эти куски кривой пунктиром, то с очень большой точностью получается. золотая спираль! Это можно проверить: измеряя отношение длин отрезков, высекаемых спиралью на прямых, которые проходят через начало кривой. «Избиение младенцев» Рафаэль

В знаменитой фреске “Афинская школа”, где в храме науки предстоит общество великих философов древности, наше внимание привлекает группа Эвклида - крупнейшего древнегреческого математика, разбирающего сложный чертеж. Хитроумная комбинация двух треугольников также построена в соответствии с пропорцией золотого сечения: она может быть вписана в прямоугольник с соотношением сторон 5/8. Этот чертеж удивительно легко вставляется в верхний участок архитектуры. Верхний угол треугольника упирается в замковый камень арки на ближнем к зрителю участке, нижний - в точку схода перспектив, а боковой участок обозначает пропорции пространственного разрыва между двумя частями арок.

ЛЕОНАРДО да ВИНЧИ

Портрет Моны Лизы (Джоконда) Леонардо да Винчи привлекает тем, что композиция рисунка построена на "золотых треугольниках", точнее на треугольниках, являющихся кусками правильного звездчатого пятиугольника.

“Тайная вечеря” - самое зрелое и законченное произведение Леонардо. В этой росписи мастер избегает всего того, что могло бы затемнить основной ход изображенного им действия, он добивается редкой убедительности композиционного решения. В центре он помещает фигуру Христа, выделяя ее просветом двери. Апостолов он сознательно отодвигает от Христа, чтобы еще более акцентировать его место в композиции. Наконец, в этих же целях он заставляет сходиться все перспективные линии в точке, непосредственно расположенной над головой Христа. Учеников Леонардо разбивает на четыре симметрические группы, полные жизни и движения. Стол он делает небольшим, а трапезную - строгой и простой. Это дает ему возможность сосредоточить внимание зрителя на фигурах, обладающих огромной пластической силой. Во всех этих приемах сказывается глубокая целеустремленность творческого замысла, в котором все взвешено и учтено. "

Боттичелли - "Рождение Венеры"

На картине изображено не само рождение богини, а последовавший за тем момент, когда она, гонимая дыханием гениев воздуха, достигает берега, где ее встречает одна из граций. Согласно древнейшему греческому поэту Гесиоду ("Теогония", 188-200), Венера родилась из моря - из пены, которую произвели гениталии оскопленного Урана (САТУРН), выброшенные в воду Кроном. Она плывет к берегу в раскрытой раковине, подгоняемой мягким дуновением ветра, и, наконец, причаливает на Пафосе (на Кипре) - одном из главных мест почитания ее, культа в античности. Ее греческое имя Афродита, возможно, происходит от aphros, что значит "пена".

Около острова Киферы родилась Афродита, дочь Урана, из белоснежной пены морских волн. Легкий, ласкающий ветерок принес ее на остров Кипр. Там окружили юные Оры вышедшую из морских волн богиню любви. Они облекли ее в златотканую одежду и увенчали венком из благоухающих цветов. Где только не ступала Афродита, там пышно разрастались цветы. Весь воздух полон был благоуханием. Эрот и Гимерот повели дивную богиню на Олимп. Громко приветствовали ее боги. С тех пор всегда живет среди богов Олимпа златая Афродита, вечно юная, прекраснейшая из богинь.

На этой знаменитой картине И. И. Шишкина с очевидностью просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны - освещенный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали. Слева от главной сосны находится множество сосен - при желании можно с успехом продолжить деление картины по золотому сечению и дальше.

Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении золотого сечения, придает ей характер уравновешенности и спокойствия, в соответствии с замыслом художника. Когда же замысел художника иной, если, скажем, он создает картину с бурно развивающимся действием, подобная геометрическая схема композиции (с преобладанием вертикалей и горизонталей) становится неприемлемой.

Золотое сечение в архитектуре

Архитектура - это способность нашего сознания закреплять в материальных формах чувство эпохи. Ле Корбюзье

Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.).

На рисунке виден целый ряд закономерностей, связанных с коэффициентом золотого сечения.

На плане пола Парфенона также можно заметить "золотые прямоугольники":

В пропорциях здания собора Парижской Богоматери мы тоже видим золотую пропорцию.

М. Казаков использовал «золотое сечение» достаточно широко в своём творчестве.

Его талант был многогранным, но в большей степени он раскрылся в многочисленных осуществленных проектах жилых домов и усадеб. Например, «золотое сечение» можно обнаружить в архитектуре здания сената в Кремле.

Многие античные скульпторы пользовались правилом золотой пропорции при возведении своих произведений.

Рассмотрим это на примере статуи Аполлона Бельведерского: пупочная линия делит рост изображённого человека в отношении золотой пропорции.

И ещё несколько примеров в доказательство тому, что золотое сечение мы наблюдаем и в скульптуре.

Дорифор Поликлета и его гармонический анализ

Венера Милосская и ее гармонический анализ

Давид Микеланджело

6. Золотая пропорция в живой природе

Все в мире связано в единое начало:

В движенье волн - шекспировский сонет,

В симметрии цветка - основы мирозданья,

А в пенье птиц - симфония планет.

Живая природа в своем развитии стремилась к наиболее гармоничной организации, критерием которой является золотая пропорция, проявляясь на самых различных уровнях - от атомных сочетаний до строения тел высших животных.

Цветки и семена подсолнуха, ромашки, чешуйки в плодах ананаса, хвойных шишках "упакованы" по логарифмическим спиралям, завивающимся навстречу друг другу. Причем числа "правых "и "левых " спиралей, всегда относятся друг к другу, как соседние числа Фибоначчи.

В формулах листорасположения (филлотаксис) многих растений встречаются числа Фибоначчи, расположенные строго закономерно - через одно, например, орешник -1/3, дуб, вишня - 2/5, облепиха-5/13

Рассмотрим побег цикория. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс.

Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т. д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Многие бабочки и другие насекомые не избежали столкновения с этим замечательным, на мой взгляд, явлением золотого сечения. Соотношение размеров грудной и брюшной части тела отвечает золотой пропорции. Сложив крылья, ночная бабочка образует правильный равносторонний треугольник. Но стоит ей развести крылья, и вы увидите всё тот же принцип деления тела на 2,3,5,8. Стрекоза также создана по законам золотой пропорции: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.

Снежинки представляют собой водные кристаллы, которые доступны нашему невооружённому глазу. Они невероятно красивы и различны по форме, но все их составляющие являются геометрическими фигурами, и так же без исключения построены по принципу золотой пропорции.

Золотое сечение затронуло даже поэзию и музыку.

В поэзии

В строении каждого стихотворения мы не можем не заметить определённые закономерности, а, следовательно, там и золотая пропорция и числа Фибоначчи. В каждом втором стихотворении А. С. Пушкина присутствует образец (паттерн) золотого сечения. А образец (паттерн) зеркальной симметрии – в каждом третьем. Один из двух паттернов обнаруживается в двух из трех стихотворений (524 или 66%), а оба паттерна - в каждом пятом стихотворении (150 или 19%).

Главными функциями золотого сечения в творчестве Пушкина являются:

}