Как определить степень окисления. Пример определения в серной кислоте

Современная формулировка Периодического закона, открытого Д. И. Менделеевым в 1869 г.:

Свойства элементов находятся в периодической зависимости от порядкового номера.

Периодически повторяющийся характер изменения состава электронной оболочки атомов элементов объясняет периодическое изменение свойств элементов при движении по периодам и группам Периодической системы.

Проследим, например, изменение высших и низших степеней окисления у элементов IA – VIIA-групп во втором – четвертом периодах по табл. 3.

Положительные степени окисления проявляют все элементы, за исключением фтора. Их значения увеличиваются с ростом заряда ядер и совпадают с числом электронов на последнем энергетическом уровне (за исключением кислорода). Эти степени окисления называют высшими степенями окисления. Например, высшая степень окисления фосфора Р равна +V.




Отрицательные степени окисления проявляют элементы, начиная с углерода С, кремния Si и германия Ge. Значения их равны числу электронов, недостающих до восьми. Эти степени окисления называют низшими степенями окисления. Например, у атома фосфора Р на последнем энергетическом уровне недостает трех электронов до восьми, значит, низшая степень окисления фосфора Р равна – III.

Значения высших и низших степеней окисления повторяются периодически, совпадая по группам; например, в IVA-группе углерод С, кремний Si и германий Ge имеют высшую степень окисления +IV, а низшую степень окисления – IV.

Эта периодичность изменения степеней окисления отражается на периодическом изменении состава и свойств химических соединений элементов.

Аналогично прослеживается периодическое изменение электроотрицательности элементов в 1-6-м периодах IA– VIIA-групп (табл. 4).

В каждом периоде Периодической системы электроотрицательность элементов увеличивается при возрастании порядкового номера (слева направо).




В каждой группе Периодической системы электроотрицательность уменьшается при возрастании порядкового номера (сверху вниз). Фтор F обладает наивысшей, а цезий Cs – наинизшей электроотрицательностью среди элементов 1-6-го периодов.

У типичных неметаллов – высокая электроотрицательность, а у типичных металлов – низкая.

Примеры заданий частей А, В

1. В 4-м периоде число элементов равно


2. Металлические свойства элементов 3-го периода от Na до Сl

1) силиваются

2) ослабевают

3) не изменяются

4) не знаю


3. Неметаллические свойства галогенов с увеличением порядкового номера

1) возрастают

2) понижаются

3) остаются без изменений

4) не знаю


4. В ряду элементов Zn – Hg – Со – Cd один элемент, не входящий в группу, – это


5. Металлические свойства элементов повышаются по ряду

1) In – Ga – Al

2) К – Rb – Sr

3) Ge – Ga – Tl

4) Li – Be – Mg


6. Неметаллические свойства в ряду элементов Аl – Si – С – N

1) увеличиваются

2) уменьшаются

3) не изменяются

4) не знаю


7. В ряду элементов О – S – Se – Те размеры (радиусы) атома

1) уменьшаются

2) увеличиваются

3) не изменяются

4) не знаю


8. В ряду элементов Р – Si – Аl – Mg размеры (радиусы) атома

1) уменьшаются

2) увеличиваются

3) не изменяются

4) не знаю


9. Для фосфора элемент с меньшей электроотрицательностью – это


10. Молекула, в которой электронная плотность смещена к атому фосфора, – это


11. Высшая степень окисления элементов проявляется в наборе оксидов и фторидов

1) СlO 2 , РСl 5 , SeCl 4 , SO 3

2) PCl, Аl 2 O 3 , КСl, СО

3) SeO 3 , ВСl 3 , N 2 O 5 , СаСl 2

4) AsCl 5 , SeO 2 , SCl 2 , Cl 2 O 7


12. Низшая степень окисления элементов – в их водородных соединениях и фторидах набора

1) ClF 3 , NH 3 , NaH, OF 2

2) H 3 S + , NH+, SiH 4 , H 2 Se

3) CH 4 , BF 4 , H 3 O + , PF 3

4) PH 3 , NF+, HF 2 , CF 4


13. Валентность для многовалентного атома одинакова в ряду соединений

1) SiH 4 – AsH 3 – CF 4

2) РН 3 – BF 3 – ClF 3

3) AsF 3 – SiCl 4 – IF 7

4) H 2 O – BClg – NF 3


14. Укажите соответствие между формулой вещества или иона и степенью окисления углерода в них



При определении этого понятия условно полагают, что связующие (валентные) электроны переходят к более электроотрицательным атомам (см. Электроотрицательность), а потому соединения состоят как бы из положительно и отрицательно заряженных ионов . Степень окисления может иметь нулевое, отрицательное и положительное значения, которые обычно ставятся над символом элемента сверху.

Нулевое значение степени окисления приписывается атомам элементов, находящихся в свободном состоянии, например: Cu, H 2 , N 2 , P 4 , S 6 . Отрицательное значение степени окисления имеют те атомы, в сторону которых смещается связующее электронное облако (электронная пара). У фтора во всех его соединениях она равна −1. Положительную степень окисления имеют атомы, отдающие валентные электроны другим атомам. Например, у щелочных и щелочноземельных металлов она соответственно равна +1 и +2. В простых ионах , подобных Cl − , S 2− , K + , Cu 2+ , Al 3+ , она равна заряду иона . В большинстве соединений степень окисления атомов водорода равна +1, но в гидридах металлов (соединениях их с водородом) - NaH, CaH 2 и других - она равна −1. Для кислорода характерна степень окисления −2, но, к примеру, в соединении с фтором OF 2 она будет +2, а в перекисных соединениях (BaO 2 и др.) −1. В некоторых случаях эта величина может быть выражена и дробным числом: для железа в оксиде железа (II, III) Fe 3 O 4 она равна +8/3.

Алгебраическая сумма степеней окисления атомов в соединении равна нулю, а в сложном ионе - заряду иона. С помощью этого правила вычислим, например, степень окисления фосфора в ортофосфорной кислоте H 3 PO 4 . Обозначив ее через x и умножив степень окисления для водорода (+1) и кислорода (−2) на число их атомов в соединении, получим уравнение: (+1) 3+x+(−2) 4=0, откуда x=+5. Аналогично вычисляем степень окисления хрома в ионе Cr 2 O 7 2− : 2x+(−2) 7=−2; x=+6. В соединениях MnO, Mn 2 O 3 , MnO 2 , Mn 3 O 4 , K 2 MnO 4 , KMnO 4 степень окисления марганца будет соответственно +2, +3, +4, +8/3, +6, +7.

Высшая степень окисления - это наибольшее положительное ее значение. Для большинства элементов она равна номеру группы в периодической системе и является важной количественной характеристикой элемента в его соединениях. Наименьшее значение степени окисления элемента, которое встречается в его соединениях, принято называть низшей степенью окисления; все остальные - промежуточными. Так, для серы высшая степень окисления равна +6, низшая −2, промежуточная +4.

Изменение степеней окисления элементов по группам периодической системы отражает периодичность изменения их химических свойств с ростом порядкового номера.

Понятие степени окисления элементов используется при классификации веществ, описании их свойств, составлении формул соединений и их международных названий. Но особенно широко оно применяется при изучении окислительно-восстановительных реакций . Понятие «степень окисления» часто используют в неорганической химии вместо понятия «валентность» (см.

Для характеристики окислительно-восстановительной способности частиц важное значение имеет такое понятие, как степень окисления. СТЕПЕНЬ ОКИСЛЕНИЯ – это заряд, который мог бы возникнуть у атома в молекуле или ионе, если бы все его связи с другими атомами оказались разорваны, а общие электронные пары ушли с более электроотрицательными элементами.

В отличие от реально существующих зарядов у ионов, степень окисления показывает лишь условный заряд атома в молекуле. Она может быть отрицательной, положительной и нулевой. Например, степень окисления атомов в простых веществах равна «0» (,
,,). В химических соединениях атомы могут иметь постоянную степень окисления или переменную. У металлов главных подгруппI, II и III групп Периодической системы в химических соединениях степень окисления, как правило, постоянна и равна соответственно Ме +1 , Ме +2 и Ме +3 (Li + , Ca +2 , Al +3). У атома фтора всегда -1. У хлора в соединениях с металлами всегда -1. В подавляющем числе соединений кислород имеет степень окисления -2 (кроме пероксидов, где его степень окисления -1), а водород +1(кроме гидридов металлов, где его степень окисления -1).

Алгебраическая сумма степеней окисления всех атомов в нейтральной молекуле равна нулю, а в ионе – заряду иона. Эта взаимосвязь позволяет рассчитывать степени окисления атомов в сложных соединениях.

В молекуле серной кислоты H 2 SO 4 атом водорода имеет степень окисления +1, а атом кислорода -2. Так как атомов водорода два, а атомов кислорода четыре, то мы имеем два «+» и восемь «-». До нейтральности не хватает шесть «+». Именно это число и является степенью окисления серы -
. Молекула дихромата калияK 2 Cr 2 O 7 состоит из двух атомов калия, двух атомов хрома и семи атомов кислорода. У калия степень окисления всегда +1, у кислорода -2. Значит, мы имеем два «+» и четырнадцать «-». Оставшиеся двенадцать «+» приходятся на два атома хрома, у каждого из которых степень окисления равна +6 (
).

Типичные окислители и восстановители

Из определения процессов восстановления и окисления следует, что, в принципе, в роли окислителей могут выступать простые и сложные вещества, содержащие атомы, которые находятся не в низшей степени окисления и поэтому могут понижать свою степень окисления. Аналогично в роли восстановителей могут выступать простые и сложные вещества, содержащие атомы, которые находятся не в высшей степени окисления и поэтому могут повышать свою степень окисления.

К наиболее сильным окислителям относятся:

1) простые вещества, образуемые атомами, имеющими большую электроотрицательность, т.е. типичные неметаллы, расположенные в главных подгруппах шестой и седьмой групп периодической системы: F, O, Cl, S (соответственно F 2 , O 2 , Cl 2 , S);

2) вещества, содержащие элементы в высших и промежуточных

положительных степенях окисления, в том числе в виде ионов, как простых, элементарных (Fe 3+), так и кислородосодержащих, оксоанионов (перманганат-ион - MnO 4 -);

3) перекисные соединения.

Конкретными веществами, применяемыми на практике в качестве окислителей, являются кислород и озон, хлор, бром, перманганаты, дихроматы, кислородные кислоты хлора и их соли (например,
,
,
), азотная кислота (
), концентрированная серная кислота (
), диоксид марганца (
), пероксид водорода и пероксиды металлов (
,
).

К наиболее сильным восстановителям относятся:

1)простые вещества, атомы которых имеют низкую электроотрицательность («активные металлы»);

2) катионы металлов в низжих степенях окисления (Fe 2+);

3) простые элементарные анионы, например, сульфид-ион S 2- ;

4) кислородосодержащие анионы (оксоанионы), соответствующие низшим положительным степеням окисления элемента (нитрит
, сульфит
).

Конкретными веществами, применяемыми на практике в качестве восстановителей, являются, например, щелочные и щелочноземельные металлы, сульфиды, сульфиты, галогенводороды (кроме HF), органические вещества – спирты, альдегиды, формальдегид, глюкоза, щавелевая кислота, а также водород, углерод, моноксид углерода (
) и алюминий при высоких температурах.

В принципе, если в состав вещества входит элемент в промежуточной степени окисления, то эти вещества могут проявлять как окислительные, так и восстановительные свойства. Все зависит от

«партнера» по реакции: с достаточно сильным окислителем оно может реагировать как восстановитель, а с достаточно сильным восстановителем – как окислитель. Так, например, нитрит-ион NO 2 - в кислой среде выступает в роли окислителя по отношению к иону I - :

2
+ 2+ 4HCl→ + 2
+ 4KCl + 2H 2 O

и в роли восстановителя по отношению к перманганат-иону MnO 4 -

5
+ 2
+ 3H 2 SO 4 → 2
+ 5
+K 2 SO 4 + 3H 2 O

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.