От «Ледяного человека» до Вселенной: как ученые определяют возраст всего. Как ученые узнают об испытаниях ядерных бомб

На нашей планете существует огромное количество форм проявления жизни. Ученые подсчитали, что на Земле насчитывается около 1,5 миллиона видов животных и не менее 500 тысяч видов растений. Откуда взялись эти растения и животные? Всегда ли они были такими? И всегда ли планета была такой же, как теперь? Как же все-таки мы узнали, что было на Земле до появления человека?

Человеческую историю мы знаем по письменным источникам, историческим записям, которые сохра­нились до наших дней. Но ведь письменность возникла в 4-3 тысячелетиях до Рождества Христова (Египет, Ме­сопотамия). А Земля, как известно, насчитывает в своём возрасте около 5 миллиардов лет! Да и все ли можно узнать из тех же письменных свидетельств? Иногда больше, чем книги рассказывают найденные во время раскопок древние вещи, предметы, которыми пользовался первый человек. Для историка-археолога это имеет часто решающее значение.

Для геологии - науки, которая изучает прошлое планеты - земные недра играют роль «письменных документов». Ведь в земных пластах сохранились остатки жизни, которые могут «рассказывать», какой эта жизнь была не тысячи, а миллионы лет назад. В недрах Земли можно найти следы капель дождя и морских волн, работы ветров и льда. По отложениям горных пород ученые восстанавливают контуры моря, реки, болота, озера, пустыни далекого прошлого.
Как же могли сохраниться до нашего времени остатки организмов прошлого? Да еще такого отдаленного от нас - на миллионы лет?

Когда какой-то организм попадает в реку, озеро или береговую полосу моря, он довольно быстро покрывается илом, песком или глиной. Пропитываясь солями, остатки организмов «каменеют». И в таком виде их находят сегодня учёные. Они могут по скелету и другим сохранившимся частям животного восстановить не только облик, но и его образ жизни. Современные методы исследования и техника позволяют по одной лишь части скелета (черепу, челюсти, костям ног) позвоночного восстановить строение его тела, ближайших родственников как среди ископаемых, так и среди современных животных.

Данные геологии и палеонтологии (наука об ископаемых животных и растениях) позволили систематизировать накопленные знания. Они стали основой членения истории жизни на Земле на пять отрезков, которые называются эрами. Каждая эра разделена на периоды, а период - на эпохи и века. В каждую из них происходили разные геологические события и изменения в развитии живой природы. Самой древней является архейская эра. Она началась около 3,5 миллиардов лет назад и продлилась 1,6 млрд. лет. На смену ей пришла протерозойская эра (начало - 1,9 млрд. лет назад).

Эра, в которую живём мы - самая молодая. Она называется кайнозойской - эрой новой жизни. Эта эра началась 70 миллионов лет назад и продолжается сейчас. Установлено это благодаря изучению осадочных пород земной коры (песка, глины, известняка и т. д.). Верхние слои - самые молодые, а чем ниже - тем они старше. По сохранившимся в них остаткам организмов была установлена подлинная жизнь на Земле в отдаленные времена.

Но для установления точных дат недостаточно исследования, слоев земной коры. Своеобразные «геологические часы» помогли создать физики и химики. Они открыли, что атомы некоторых элементов - урана, тория, радия - все время изменяются. Это изменение называется «распадом». При этом образуются другие элементы.

Подобное превращение сопровождается радиацией (выделением или излучением мелких заряженных частиц), а сам процесс называется радиоактивным распадом. Он протекает всегда с одной и той же скоростью. У разных элементов неодинаковая скорость, а значит и время полного распада. Например, рубидий-87 распадается примерно за 50 миллиардов лет, уран-238 - за 4,5 млрд. лет. А вот радий - за 1590 лет. Постоянные для каждого радиоактивного элемента скорости распада позволили использовать их как точные часы для измерения возраста горных пород. А для определения более короткого времени научились использовать радиоуглеродный метод. Ведь в тканях живых организмов находится наряду в обычным углеродом (атомный вес 12) небольшое количество его изотопа. Это то же самое вещество, но его атомный вес равен 14. Период его полураспада - 5760 лет. Проверить же этот метод удалось путем сопоставления с датированными археологическими памятниками.

Когда мы слышим, что археологи обнаружили тот или иной артефакт, которому, например, 5300 лет, то принимаем это как должное, хотя можем и не знать, как ученые так точно определяют возраст находки. Есть разные методы, о пяти мы и расскажем.

Стратиграфия

Самым классическим археологическим методом датировки считается стратиграфия. В основном она применяется в случае раскопок поселений, которые существовали продолжительный период времени.

Дело в том, что в местах, где живут люди, слой почвы постоянно повышается – в связи со стройками, земляными работами и прочими элементами человеческой деятельности. Это наслоение и называется культурным слоем, которое похоже на слоенный пирог. И каждый слой в нем – отражение определенного периода жизни города.

В нем сохраняются древние сооружения, строительный, хозяйственный мусор, следы пожаров. Более того, земля может рассказать нам о судьбе конкретной семьи. При раскопках древнерусских городищ часто можно обнаружить сгоревший дом с его хозяевами, не успевшими вовремя спастись.

Как же происходит сама датировка? По сути, путем сравнения со слоями других памятников, про которые больше известно, скажем из письменных источников, по найденным находкам, которые характерны для определенного периода, а также по структуре и цвету и составу почвы.

Например, в городах Волжской Болгарии, переживших монголо-татарское нашествие, домонгольский слой по составу, а часто и по цвету отличен от более позднего слоя. Кроме того, стратиграфия позволяет установить хронологическую последовательность, поскольку в непотревоженном культурном слое нижние слои древнее верхних.

Поэтому так важен именно нетронутый культурный слой. Тот, что был разрушен при строительстве или черными копателями не только не годен к стратиграфическому анализу, но и вообще не сможет рассказать об истории этого места, поскольку все культурные слои и, соответственно, исторические периоды будут перемешаны. К сожалению, разрушенные культурные слои – довольно частая картина.

Сравнительный метод

Сравнительный метод позволяет определить и относительную, и в некоторых случаях, точную датировку. Он является сугубо историческим: слои датируются по древним надписям на находках, монетам.
Для данного метода характерно сопоставление археологических данных с письменными источниками, описывающими жизнь на изучаемой территории или быт определенного народа. Разумеется, если они есть. Сравнительный метод практически бесполезен для датировки дописьменных культур, особенно в случае отсутствия рядом с ними древних письменных цивилизаций.
В эту же категорию можно отнести и способ датировки по художественным особенностям изделий и изображений. Например, для отдельных периодов и культур существовали свои творческие особенности, будь то особый узор, техника изготовления и прочее. При нахождении общих правил распознавания таких стилистических признаков, датировать предметы можно достаточно точно.

Типологический

Но чтобы датировать слой с помощью художественных особенностей, нужно для начала датировать сами художественные особенности. Тут на помощь приходит метод с рутинным названием «типологический», вперемешку со стратиграфией. Он основывается на объединении находок в типологические ряды – серии вещей, имеющих повторяющиеся или прогрессирующие признаки. Для установления даты такой серии необходимо иметь несколько археологических объектов, содержащих вещи этого типа. Отрезок времени, ограниченный крайними датами в этой серии, и будет определять дату типа. При этом достоверность датировки зависит от количества этих археологических объектов. Если их достаточно, то правильность датировки может быть проверена по характеру распределения дат объектов. При статистически достаточном количестве однотипных вещей можно с некоторой вероятностью вычислить интервал, в течение которого данный тип находился в обиходе.

Радиоуглеродный метод

Для абсолютной датировки археологами применяется радиоуглеродный анализ, который отталкивается от содержания в органических предметах радиоактивного углерода C-14.
Все живые организмы, которые усваивают обычный углерод из атмосферы, вместе с ним вбирают и радиоактивный углерод С-14. Поэтому, прижизненная концентрация радиоуглерода практически одинакова, как у деревьев и растений, так в человеческих и животных телах. Но после смерти в органике начинается процесс разрушения усвоенного радиоуглерода. Если сравнить дерево, срубленное 5000 лет назад, с современным деревом, то окажется, что в старой древесине содержание изотопа С-14 ровно в два раза меньше. Таким образом, радиоуглеродным методом можно определять возраст углеродосодержащего вещества до 70-100 тысяч лет, но не больше. Для более «древних» находок, скажем, для датировки костей динозавров, применяются другие изотопы, например, бериллий-10.
Несмотря на то, что радиоуглеродный анализ позволяет с точностью определить время смерти органики, у него есть свои минусы и их немало. Первый недостаток заключается в том, что он датирует только органическое вещество, а не время создание из него исторического артефакта. Например, в случае икон, он может датировать материал, из которого она сделана, но для изготовления качественной подделки можно подобрать и старинный материал. Грубо говоря, возраст доски еще не говорит о возрасте картины.
Другой недостаток данного метода в том, что результат может быть искажен, если образец был сильно загрязнен углеродосодержащими материалами более позднего периода. В этом случае, определение возраста может дать огромные ошибки. Погрешность метода в настоящее время находится в пределах 70-300 лет, на первых порах исследования она была намного больше.
Именно на вероятность подобной ошибки ссылаются сторонники подлинности знаменитой Туринской плащаницы, которую также подвергли радиоуглеродному анализу. В результате она была датирована интервалом от 1260 до 1390 года. Скептики сразу объявили ее средневековой подделкой, на что ее защитники выдвинули предположение о загрязнении плащаницы углеродом при пожаре XVI века. Кстати, для проверки верности результатов одновременно с плащаницей анализировали три другие образца тканей: плащ Людовика IX из XIII века, саван из египетского погребения, сотканный около 1100 года, и ткань, укутывавшая египетскую мумию, датируемую приблизительно 200 годом. Во всех трех случаях лабораторные результаты совпали с исходными данными.

Палеомагнитный метод

Одной из самых распространенных находок в археологии большинства периодов является керамика. Сегодня ее можно датировать с точностью до десятков лет, определив время обжига, последнего растапливания печи и так далее. Это возможно благодаря палеомагнитному методу, основанному на изменчивости магнитного поля Земли и на свойстве материалов намагничиваться при высоких температурах под его воздействием. Так, при переходе железосодержащих веществ из жидкого состояния в твердое, в образующихся минералах сохраняется так называемая остаточная намагниченность. При этом ее вектор будет совпадать с ориентацией магнитного поля Земли в момент образования минерала. Полученные сведения о состоянии магнитного поля земли на момент обжига соотносят с геохронологическими шкалами, составленными при помощи палеонтологических, радиометрических и других данных, и получают результат.
Основной минус палеомагнитного метода в том, что для точных данных, нужно, чтобы объект исследования после обжига не перемещался, а это условие выполнимо лишь в редких случаях.

В большинстве голливудских картин о встречах с инопланетным разумом на экране – хаос, паника и истерика. Горят и рушатся здания, закипает ярость, происходят беспорядки и дестабилизируется общество. А как на самом деле человечество воспримет новость о том, что инопланетяне все‐таки существуют? Американские ученые из Университета Аризоны, задавшись этим вопросом, провели необычное исследование и пришли к выводу, что все не так печально, пишет National Geographic.

Следующая новость

Ученые решили провести лингвистический анализ откликов читателей новостей о возможном открытии внеземной жизни. В качестве примеров команда выбрала обнаружение в 1967 году пульсаров — странных мертвых звезд, которые изначально предполагались сигналами от разумных существ, знаменитый сигнал из космоса «Wow!», обнаруженный исследователями SETI в 1977 году, «открытие» окаменелых микробов в марсианском метеорите в 1996 году, странное поведение звезды Табби, и находку в 2017 году нескольких экзопланет, схожих по размеру с Землей, пишет издание .

Программа анализа языка показала, что количество слов, свидетельствующих о положительных эмоциях, превысило число негативных. Таким образом, скорее всего, люди «достаточно хорошо» воспримут реальные доказательства существования инопланетной жизни.

Конечно, я бы также предсказал, что, если враждебная армада появлялась бы вблизи Юпитера, мы не были бы счастливы

По его словам, ученые не были уверены в таком результате изначально, ведь в художественной литературе часто открытие внеземной жизни имеет негативные последствия.

Результаты работы также подтверждает аналогичный анализ реакции аудитории на новость о том, что астероид Оумуамуа может быть инопланетным кораблем.

Еще в одном исследовании пользователям соцсетей предложили описать собственную реакцию на встречу с инопланетянами. Более 500 человек приняли участие в опросе. Их ответы проанализировали аналогичным способом.

Я бы очень заинтересовался. Я бы нашел всю информацию в интернете, которую смог. Я бы не вылезал из Сети, пока не увидел бы фотографии инопланетной жизни. И лишь после этого успокоился бы

— таким был один из ответов

Как и в случае с новостями, люди продемонстрировали больше положительных эмоций. По мнению ученых, позитивная реакция связана с тем, что каждый день человечество делает все больше открытий в космосе, люди узнают о существовании новых экзопланет у далеких звезд, подробности об устройстве Марса и прочее. Поэтому новость об открытии внеземной жизни уже не станет для них слишком большим откровением. Правда, оговорились авторы работы, результаты исследования могли быть совсем иными в других странах, поскольку отношение к религии, традиции и обычаи в них могут существенно отличаться.


Землетрясение? Ядерный взрыв? Деление или синтез? Мы узнаем, даже если мировые лидеры лгут. На международной арене есть не так много вещей, пугающих больше, чем возможность ядерной войны. У многих стран есть боеголовки – некоторые с делением, другие с более смертоносным синтезом – но не все открыто заявляют, что они у них есть. Некоторые взрывают ядерные устройства, отрицая это; другие утверждают, что обладают термоядерными бомбами, тогда как в действительности нет. Благодаря глубокому знанию науки, Земли и того, как через нее проходят волны давления, нам не нужно подвергать лидера страны пыткам, чтобы узнать правду, считает Итан Зигель с Medium.com.

В январе 2016 года правительство Северной Кореи заявило, что взорвало водородную бомбу, которую также пообещало использовать против любых агрессоров, угрожающих стране. Несмотря на то, что в новостных агентствах были показаны фотографии грибных облаков с подробным описанием, эти кадры оказались архивными; испытания не были современными. Радиация, попадающая в атмосферу, опасна и будет явным нарушением Договора о всеобъемлющем запрещении ядерных испытаний 1996 года. Так что, если страны хотят протестировать ядерное оружие, они делают это там, где никто не сможет найти радиацию: под землей.

В Южной Корее репортаж о ситуации был жутким, но неточным, поскольку показанные грибные облака – это старые кадры, не имеющие отношения к северокорейским испытаниям

Вы можете взорвать бомбу где угодно: в воздухе, под водой в океане или под землей. Все три взрыва можно в принципе обнаружить, хотя энергия взрыва будет «приглушенной» в зависимости от среды, в которой распространяется.

Воздух, будучи наименее плотным, хуже всего заглушает звук. Грозы, извержения вулканов, запуски ракет и ядерные взрывы испускают не только звуковые волны, которые можно услышать, но и инфразвуковые (длинной волны, низкой частоты), которые – в случае ядерного взрыва – такие энергетически мощные, что детекторы по всему миру с легкостью их распознают.

Облако ядерного взрыва над Нагасаки

Вода плотнее, и хотя звуковые волны движутся в воде быстрее, чем в воздухе, энергия быстрее рассеивается с пройденным расстоянием. Однако, если ядерная бомба взрывается под водой, выделяемая энергия настолько велика, что генерируемые волны давления могут быть легко уловимы гидроакустическими детекторами, развернутыми многими странами. Кроме того, нет никаких водных явлений, которые можно было бы спутать с ядерным взрывом.

Поэтому, если страна хочет попытаться скрыть ядерное испытание, лучше всего будет провести его под землей. Хотя генерируемые сейсмические волны могут быть очень сильными от ядерного взрыва, у природы есть еще более сильный метод генерации сейсмических волн: землетрясения! Единственный способ рассказать о них – триангуляция точного положения, потому что землетрясения очень и очень редко происходят на глубине 100 метров или меньше, а ядерные испытания (пока что) всегда проходили на небольшой глубине под землей.

С этой целью страны, которые подписали Договор о запрещении ядерных испытаний, создали сейсмические станции по всему миру, чтобы вынюхивать любые ядерные испытания, которые проводятся.

Международная система отслеживания ядерных испытаний, показывающая пять крупных типов испытаний и положения всех станции. Всего в настоящее время активны 337 известных станций

Именно этот акт сейсмического мониторинга позволяет нам делать выводы о том, насколько мощным был взрыв и в каком месте Земли – в трех измерениях – он произошел. Сейсмическое событие Северной Кореи, которое произошло в 2016 году, было зарегистрировано по всему миру; 337 активных мониторинговых станций по всей Земли были достаточно чувствительны для этого. По данным Геологической службы США, в 6 января 2016 года в Северной Корее произошло событие, эквивалентное землетрясению величиной 5.1 балла на глубине 0,0 километра. Основываясь на величине землетрясения и сейсмических волн, которые были зарегистрированы, мы можем восстановить объем выпущенной энергии – порядка 10 килотонн тротилового эквивалента – и понять, был это ядерный взрыв или нет.

Благодаря чувствительности наблюдательных станций, глубину, величину и положение взрыва, который заставил Землю трястись 6 января 2016 года, можно четко установить

Важнейшая подсказка, помимо косвенных доказательств величины и глубины землетрясения, исходит из типов генерируемых сейсмических волн. В общем, есть S- и P-волны, сдвиговые, или вторичные, и продольные волны, которые иногда называют первичными. Землетрясения, как известно, производят мощнейшие S-волны по сравнению с P-волнами, а ядерные испытания рождают более мощные P-волны. И вот, Северная Корея заявляет, что это была водородная бомба (синтеза), которая намного смертоноснее бомб деления. В то время, как энергия, выпускаемая урановыми или плутониевыми бомбами на основе реакции деления имеют мощность порядка 2-50 килотонн тротилового эквивалента, водородные бомбы выпускают энергию в тысячи раз мощнее. Рекордсмен события – советская Царь-бомба мощностью 50 мегатонн тротилового эквивалента.

Взрыв Царь-бомбы в 1961 году был крупнейшим ядерным взрывом на Земле и стал одним из самых важных для дальнейшего определения судьбы ядерного оружия

Профиль волн, полученный по всему миру, говорит, что это не землетрясение. Так что да, Северная Корея вероятнее всего взорвала ядерную бомбу. Но какую? Есть разница между бомбами на основе синтеза и на основе деления:

Бомба на основе ядерного деления берет тяжелый элемент с большим количеством протонов и нейтронов, например, изотопы урана или плутония, и бомбардирует их нейтронами, которые могут быть захвачены ядром. Когда происходит захват, рождается новый нестабильный изотоп, который диссоциирует на более мелкие ядра, высвобождая энергию, а также дополнительные свободные нейтроны, позволяя начаться цепной реакции. Если все сделано правильно, огромное количество атомов может пройти через эту реакцию, превратив миллионы миллиграммов или даже граммов материи в чистую энергию по формуле E = mc2.
Термоядерная бомба на основе синтеза берет легкие элементы, такие как водород, и при помощи огромных энергий, температур и давления делает так, чтобы эти элементы слились в более тяжелые, такие как гелий, выделяя еще больше энергии, чем бомба на основе деления. Температура и давление требуются настолько большие, что единственный способ создать термоядерную бомбу – это окружить гранулу синтеза топливо на основе бомбы деления: чтобы огромный выброс энергии смог запустить реакцию синтеза. До килограмма вещества может превратиться в чистую энергию на стадии синтеза.

Многие путают испытания с бомбами деления и синтеза. Но ученые различают их безошибочно

Что касается выхода энергии, то северокорейская тряска была несомненно вызвана бомбой на основе деления. Если бы это было не так, то это был бы самый слабый, самый эффективный взрыв с реакцией синтеза на планете, который даже в теории создать не получается. С другой стороны, есть четкие доказательства того, что это был именно взрыв с реакцией деления, поскольку записи сейсмических станций показали невероятно похожий взрыв в 2013 году, все в той же Северной Корее.

Разница между встречающимися в природе землетрясениями, сигнал которых показал синим, и ядерным испытанием, показанным красным, не оставляет сомнений в природе такого события

Другими словами, все данные, которые мы имеем, указывают на один вывод: в основе этого ядерного взрыва была именно реакция деления, а не синтеза. И это точно не было землетрясением. S- и P-волны доказали, что Северная Корея взрывает ядерные бомбы, нарушая международный закон, но сейсмические сводки, несмотря на удаленность, показывают, что это не бомбы синтеза. У Северной Кореи ядерные технологии 1940-х годов. Даже если мировые лидеры лгут, Земля скажет правду.

Землетрясение? Ядерный взрыв? Деление или синтез? Мы узнаем, даже если мировые лидеры лгут. На международной арене есть не так много вещей, пугающих больше, чем возможность ядерной войны. У многих стран есть боеголовки – некоторые с делением, другие с более смертоносным синтезом – но не все открыто заявляют, что они у них есть. Некоторые взрывают ядерные устройства, отрицая это; другие утверждают, что обладают термоядерными бомбами, тогда как в действительности нет. Благодаря глубокому знанию науки, Земли и того, как через нее проходят волны давления, нам не нужно подвергать лидера страны пыткам, чтобы узнать правду, считает Итан Зигель с Medium.com.

В январе 2016 года правительство Северной Кореи заявило, что взорвало водородную бомбу, которую также пообещало использовать против любых агрессоров, угрожающих стране. Несмотря на то, что в новостных агентствах были показаны фотографии грибных облаков с подробным описанием, эти кадры оказались архивными; испытания не были современными. Радиация, попадающая в атмосферу, опасна и будет явным нарушением Договора о всеобъемлющем запрещении ядерных испытаний 1996 года. Так что, если страны хотят протестировать ядерное оружие, они делают это там, где никто не сможет найти радиацию: под землей.

В Южной Корее репортаж о ситуации был жутким, но неточным, поскольку показанные грибные облака – это старые кадры, не имеющие отношения к северокорейским испытаниям

Вы можете взорвать бомбу где угодно: в воздухе, под водой в океане или под землей. Все три взрыва можно в принципе обнаружить, хотя энергия взрыва будет «приглушенной» в зависимости от среды, в которой распространяется.

Воздух, будучи наименее плотным, хуже всего заглушает звук. Грозы, извержения вулканов, запуски ракет и ядерные взрывы испускают не только звуковые волны, которые можно услышать, но и инфразвуковые (длинной волны, низкой частоты), которые – в случае ядерного взрыва – такие энергетически мощные, что детекторы по всему миру с легкостью их распознают.

Облако ядерного взрыва над Нагасаки

Вода плотнее, и хотя звуковые волны движутся в воде быстрее, чем в воздухе, энергия быстрее рассеивается с пройденным расстоянием. Однако, если ядерная бомба взрывается под водой, выделяемая энергия настолько велика, что генерируемые волны давления могут быть легко уловимы гидроакустическими детекторами, развернутыми многими странами. Кроме того, нет никаких водных явлений, которые можно было бы спутать с ядерным взрывом.

Поэтому, если страна хочет попытаться скрыть ядерное испытание, лучше всего будет провести его под землей. Хотя генерируемые сейсмические волны могут быть очень сильными от ядерного взрыва, у природы есть еще более сильный метод генерации сейсмических волн: землетрясения! Единственный способ рассказать о них – триангуляция точного положения, потому что землетрясения очень и очень редко происходят на глубине 100 метров или меньше, а ядерные испытания (пока что) всегда проходили на небольшой глубине под землей.

С этой целью страны, которые подписали Договор о запрещении ядерных испытаний, создали сейсмические станции по всему миру, чтобы вынюхивать любые ядерные испытания, которые проводятся.

Международная система отслеживания ядерных испытаний, показывающая пять крупных типов испытаний и положения всех станции. Всего в настоящее время активны 337 известных станций

Именно этот акт сейсмического мониторинга позволяет нам делать выводы о том, насколько мощным был взрыв и в каком месте Земли – в трех измерениях – он произошел. Сейсмическое событие Северной Кореи, которое произошло в 2016 году, было зарегистрировано по всему миру; 337 активных мониторинговых станций по всей Земли были достаточно чувствительны для этого. По данным Геологической службы США, в 6 января 2016 года в Северной Корее произошло событие, эквивалентное землетрясению величиной 5.1 балла на глубине 0,0 километра. Основываясь на величине землетрясения и сейсмических волн, которые были зарегистрированы, мы можем восстановить объем выпущенной энергии – порядка 10 килотонн тротилового эквивалента – и понять, был это ядерный взрыв или нет.

Благодаря чувствительности наблюдательных станций, глубину, величину и положение взрыва, который заставил Землю трястись 6 января 2016 года, можно четко установить

Важнейшая подсказка, помимо косвенных доказательств величины и глубины землетрясения, исходит из типов генерируемых сейсмических волн. В общем, есть S- и P-волны, сдвиговые, или вторичные, и продольные волны, которые иногда называют первичными. Землетрясения, как известно, производят мощнейшие S-волны по сравнению с P-волнами, а ядерные испытания рождают более мощные P-волны. И вот, Северная Корея заявляет, что это была водородная бомба (синтеза), которая намного смертоноснее бомб деления. В то время, как энергия, выпускаемая урановыми или плутониевыми бомбами на основе реакции деления имеют мощность порядка 2-50 килотонн тротилового эквивалента, водородные бомбы выпускают энергию в тысячи раз мощнее. Рекордсмен события – советская Царь-бомба мощностью 50 мегатонн тротилового эквивалента.

Взрыв Царь-бомбы в 1961 году был крупнейшим ядерным взрывом на Земле и стал одним из самых важных для дальнейшего определения судьбы ядерного оружия

Профиль волн, полученный по всему миру, говорит, что это не землетрясение. Так что да, Северная Корея вероятнее всего взорвала ядерную бомбу. Но какую? Есть разница между бомбами на основе синтеза и на основе деления:

  • Бомба на основе ядерного деления берет тяжелый элемент с большим количеством протонов и нейтронов, например, изотопы урана или плутония, и бомбардирует их нейтронами, которые могут быть захвачены ядром. Когда происходит захват, рождается новый нестабильный изотоп, который диссоциирует на более мелкие ядра, высвобождая энергию, а также дополнительные свободные нейтроны, позволяя начаться цепной реакции. Если все сделано правильно, огромное количество атомов может пройти через эту реакцию, превратив миллионы миллиграммов или даже граммов материи в чистую энергию по формуле E = mc 2 .
  • Термоядерная бомба на основе синтеза берет легкие элементы, такие как водород, и при помощи огромных энергий, температур и давления делает так, чтобы эти элементы слились в более тяжелые, такие как гелий, выделяя еще больше энергии, чем бомба на основе деления. Температура и давление требуются настолько большие, что единственный способ создать термоядерную бомбу – это окружить гранулу синтеза топливо на основе бомбы деления: чтобы огромный выброс энергии смог запустить реакцию синтеза. До килограмма вещества может превратиться в чистую энергию на стадии синтеза.

Многие путают испытания с бомбами деления и синтеза. Но ученые различают их безошибочно

Что касается выхода энергии, то северокорейская тряска была несомненно вызвана бомбой на основе деления. Если бы это было не так, то это был бы самый слабый, самый эффективный взрыв с реакцией синтеза на планете, который даже в теории создать не получается. С другой стороны, есть четкие доказательства того, что это был именно взрыв с реакцией деления, поскольку записи сейсмических станций показали невероятно похожий взрыв в 2013 году, все в той же Северной Корее.

Разница между встречающимися в природе землетрясениями, сигнал которых показал синим, и ядерным испытанием, показанным красным, не оставляет сомнений в природе такого события

Другими словами, все данные, которые мы имеем, указывают на один вывод: в основе этого ядерного взрыва была именно реакция деления, а не синтеза. И это точно не было землетрясением. S- и P-волны доказали, что Северная Корея взрывает ядерные бомбы, нарушая международный закон, но сейсмические сводки, несмотря на удаленность, показывают, что это не бомбы синтеза. У Северной Кореи ядерные технологии 1940-х годов. Даже если мировые лидеры лгут, Земля скажет правду.